12 resultados para Northern Shaanxi Province
em Publishing Network for Geoscientific
Resumo:
A comprehensive (mineralogical, geochronological, and geochemical) study of zircons from an eclogitized gabbronorite dike was carried out in order to identify reliable indicators (mineralogical and geochronological) of genesis of the zircons in their various populations and, correspondingly, ages of certain geological events (magmatic crystallization of the gabbroids, their eclogitization, and overprinted retrograde metamorphism). Three populations of zircons separated from two rock samples comprised xenogenic, magmatic (gabbroic), and metamorphic zircons, with the latter found exclusively in the sample of retrograded eclogitized gabbroids. Group I zircons are xenogenic and have a Meso- to Neoarchean age. Mineral inclusions in them (quartz, apatite, biotite, and chlorite) are atypical of gabbroids, and geochemistry of these zircons is very diverse. Group II zircons contain mineral inclusions of ortho- and clinopyroxene and are distinguished for their very high U, Th, Pb, and REE concentrations and Th/U ratios. These zircons formed during the late magmatic crystallization of the gabbroids at temperatures of 1150-1160°C, and their U-Pb age 2389±25 Ma corresponds to this process. Eclogite mineral assemblages crystallized shortly after the magmatic process, as follows from the fact that marginal portions of prismatic zircons contain clinopyroxene inclusions with elevated contents of the jadeite end-member. Group III zircons contain rare amphibole and biotite inclusions and have low Ti, Y, and REE concentrations, low Th/U ratios, high Hf concentrations, contain more HREE than LREE, and have U-Pb age 1911±9.5 Ma, which corresponds to age of overprinted amphibolite-facies metamorphism.
Resumo:
Palynological studies of the intrabasaltic sediment layers in the lower volcanic series from ODP Leg 104 outer Voring Plateau Hole 642E Cores 102 through 109 indicated abundant pollen and rarer dinoflagellate cysts. The dinoflagellates belong to the Apectodinium hyperacanthum Zone and indicate an age equivalent to nannoplankton Zones NP9-lower NP10 around the Paleocene/Eocene boundary. The pollen and spore assemblage found here in 12 of the samples from the lower volcanic series is of well- preserved and distinctive specimens and contains unusual forms of pollen from the Taxodiaceae and the Hamamelidae. It has not been transported far from vegetation that was dominated by conifer forest with some ferns and deciduous arborescent angiosperms. Nearly identical assemblages are found elsewhere in the Brito-Arctic Igneous Province, in intrabasaltic sediments from eastern Greenland, the Faeroe Islands, the Isle of Mull, and Antrim (Northern Ireland), and above basalt at the Rockall Plateau. The assemblage is also present in sediments around the Paleocene/Eocene boundary in Spitsbergen. This pollen and spore flora is also associated with dinoflagellate cysts of the Apectodinium hyperacanthum Zone in the deposits from eastern Greenland, the Rockall Plateau, and Spitsbergen, suggesting that these are correlative. Assemblages of the same age from the North Sea, Denmark, and the London and Paris Basins are different. Paleobotanical evidence suggests a short survival of the intrabasaltic flora, and that all the deposits considered here are of about the same age. We propose that at around the Paleocene/Eocene boundary a distinct flora, named here as the Brito-Arctic Igneous Province (BIP) flora, occurred on the line of volcanicity stretching from Rockall to the Greenland Sea, and even to Spitsbergen. Geophysical evidence supports our view that the Rockall to East Greenland intrabasaltics are more or less contemporaneous, at about the Paleocene/Eocene boundary. However, the comparable pollen and spore assemblage in the Hebridean province, at Mull and Antrim, is from pyroclastics that may be a little older.
Resumo:
The surf clams Mesodesma mactroides Reeve, 1854 and Donax hanleyanus Philippi, 1847 are the two dominating species in macrobenthic communities of sandy beaches off northern Argentina, with the latter now surpassing M. mactroides populations in abundance and biomass. Before stock decimation caused by exploitation (during the 1940s and 1950s) and mass mortality events (1995, 1999 and 2007) M. mactroides was the prominent primary consumer in the intertidal ecosystem and an important economic resource in Argentina. Since D. hanleyanus was not commercially fished and not affected by mass mortality events, it took over as the dominant species, but did never reach the former abundance of M. mactroides. Currently abundance and biomass of both surf clams are a multiple smaller than those of forty years ago, indicating the conservation status of D. hanleyanus and M. mactroides as endangered. Therefore the aim of this study is to analyse the population dynamics (population structure, growth and reproductive biology) of D. hanleyanus and M. mactroides, and to compare the results with historical data in order to detect possible differences within surf clam populations forty years ago and at present.
Resumo:
Respiration rates of 16 calanoid copepod species from the northern Benguela upwelling system were measured on board RRS Discovery in September/October 2010 to determine their energy requirements and assess their significance in the carbon cycle. Individual respiration rates were standardised to a mean copepod body mass and a temperature regime typical of the northern Benguela Current. These adjusted respiration rates revealed two different activity levels (active and resting) in copepodids C5 of Calanoides carinatus and females of Rhincalanus nasutus, which reduced their metabolism during dormancy by 82% and 62%, respectively. An allometric function (Imax) and an energy budget approach were performed to calculate ingestion rates. Imax generally overestimated the ingestion rates derived from the energy budget approach by >75%. We suggest that the energy budget approach is the more reliable approximation with a total calanoid copepod (mainly females) consumption of 78 mg C m-2 d-1 in neritic regions and 21 mg C m-2 d-1 in oceanic regions. The two primarily herbivorous copepods C. carinatus (neritic) and Nannocalanus minor (oceanic) contributed 83% and 5%, respectively, to total consumption by calanoid copepods. Locally, C. carinatus can remove up to 90% of the diatom biomass daily. In contrast, the maximum daily removal of dinoflagellate biomass by N. minor was 9%. These estimates imply that C. carinatus is an important primary consumers in the neritic province of the northern Benguela system, while N. minor has little grazing impact on phytoplankton populations further offshore. Data on energy requirements and total consumption rates of dominant calanoid copepods of this study are essential for the development of realistic carbon budgets and food-web models for the northern Benguela upwelling system.