18 resultados para Northern Europe
em Publishing Network for Geoscientific
Resumo:
Maps of continental-scale land cover are utilized by a range of diverse users but whilst a range of products exist that describe present and recent land cover in Europe, there are currently no datasets that describe past variations over long time-scales. User groups with an interest in past land cover include the climate modelling community, socio-ecological historians and earth system scientists. Europe is one of the continents with the longest histories of land conversion from forest to farmland, thus understanding land cover change in this area is globally significant. This study applies the pseudobiomization method (PBM) to 982 pollen records from across Europe, taken from the European Pollen Database (EPD) to produce a first synthesis of pan-European land cover change for the period 9000 BP to present, in contiguous 200 year time intervals. The PBM transforms pollen proportions from each site to one of eight land cover classes (LCCs) that are directly comparable to the CORINE land cover classification. The proportion of LCCs represented in each time window provides a spatially aggregated record of land cover change for temperate and northern Europe, and for a series of case study regions (western France, the western Alps, and the Czech Republic and Slovakia). At the European scale, the impact of Neolithic food producing economies appear to be detectable from 6000 BP through reduction in broad-leaf forests resulting from human land use activities such as forest clearance. Total forest cover at a pan-European scale moved outside the range of previous background variability from 4000 BP onwards. From 2200 BP land cover change intensified, and the broad pattern of land cover for preindustrial Europe was established by 1000 BP. Recognizing the timing of anthropogenic land cover change in Europe will further the understanding of land cover-climate interactions, and the origins of the modern cultural landscape.
Resumo:
The Greenland Ice Sheet Project 2 (GISP2) core can enhance our understanding of the relationship between parameters measured in the ice in central Greenland and variability in the ocean, atmosphere, and cryosphere of the North Atlantic Ocean and adjacent land masses. Seasonal (summer, winter) to annual responses of dD and deuterium excess isotopic signals in the GISP2 core to the seesaw in winter temperatures between West Greenland and northern Europe from A.D. 1840 to 1970 are investigated. This seesaw represents extreme modes of the North Atlantic Oscillation, which also influences sea surface temperatures (SSTs), atmospheric pressures, geostrophic wind strength, and sea ice extents beyond the winter season. Temperature excursions inferred from the dD record during seesaw/extreme NAO mode years move in the same direction as the West Greenland side of the seesaw. Symmetry with the West Greenland side of the seesaw suggests a possible mechanism for damping in the ice core record of the lowest decadal temperatures experienced in Europe from A.D. 1500 to 1700. Seasonal and annual deuterium excess excursions during seesaw years show negative correlation with dD. This suggests an isotopic response to a SST/ land temperature seesaw. The isotopic record from GISP2 may therefore give information on both ice sheet and sea surface temperature variability. Cross-plots of dD and d show a tendency for data to be grouped according to the prevailing mode of the seesaw, but do not provide unambiguous identification of individual seesaw years. A combination of ice core and tree ring data sets may allow more confident identification of GA and GB (extreme NAO mode) years prior to 1840.
Resumo:
Orbital forcing does not only exert direct insolation effects, but also alters climate indirectly through feedback mechanisms that modify atmosphere and ocean dynamics and meridional heat and moisture transfers. We investigate the regional effects of these changes by detailed analysis of atmosphere and ocean circulation and heat transports in a coupled atmosphere-ocean-sea ice-biosphere general circulation model (ECHAM5/JSBACH/MPI-OM). We perform long term quasi equilibrium simulations under pre-industrial, mid-Holocene (6000 years before present - yBP), and Eemian (125 000 yBP) orbital boundary conditions. Compared to pre-industrial climate, Eemian and Holocene temperatures show generally warmer conditions at higher and cooler conditions at lower latitudes. Changes in sea-ice cover, ocean heat transports, and atmospheric circulation patterns lead to pronounced regional heterogeneity. Over Europe, the warming is most pronounced over the north-eastern part in accordance with recent reconstructions for the Holocene. We attribute this warming to enhanced ocean circulation in the Nordic Seas and enhanced ocean-atmosphere heat flux over the Barents Shelf in conduction with retreat of sea ice and intensified winter storm tracks over northern Europe.
Resumo:
The stratigraphy and pollen analysis of the deposits show that this is a lake basin which during the Late-glacial period was partially filled by lake clays and muds. One of the main interests of the pollen diagrams lies in the division of zone i into three suh-zones showing a minor climatic oscillation which seems to be comparable with the Boiling oscillation of northern Europe. During Post-glacial time the greater part of the deposits has been muds but on one side a fen developed which in early zone VI was sufficiently dry to support birch and pine wood. Later in zone VI the water table must have risen slightly because the fen peats were gradually covered by a rather oxidized mud suggesting that the fen became replaced by a shallow swamp with a widely fluctuating water table. In the Atlantic period the basin was reflooded and the more central deposits were covered by a layer of mud. Later in the central region, swamp and eventually Sphagnum bog communities developed. The whole area is now covered by a sihy soil and forms a flat meadowland.
Resumo:
Sixty-five species of benthic ostracodes have been discovered in the Triassic sediments of Ocean Drilling Program Leg 122, drilled on the northwestern margin of Australia. Known species were found in the samples studied from the upper Norian-Rhaetian at Holes 759B and 760B and from the Rhaetian at Holes 761C, 764A, and 764B. A large part of material of the recovered ostracodes belong to taxa that are related to ostracodes described in the Tethyan province. Seven species are known from northwestern Europe and five from Iran. Ogmoconcha and Rhombocythere, which are stratigraphically important genera in northern Europe, extend into the Tethyan province. Species of Ogmoconcha are present in Holes 760B, 764A, and 764B. The highly ornate baidiids of the Alpine Tethyan province are dominant in Hole 761C. The affinities with the fauna of Iran noted by Kristan-Tollmann are corroborated by the presence of the genera Mostlerella, Hiatobairdia, and other bairdiids.
Resumo:
Colonization of new habitats through dispersal of phytoplankton cysts might be limited, if resident populations outcompete invaders during germination. We reciprocally transferred Gonyostomum semen (Raphidophyceae) cysts from three lakes into native and foreign waters originating from the respective habitats. Germination rate and germling growth were impacted by water origin, but there was no preference for native water. Gonyostomum semen's ability to germinate in different conditions might explain its expansion in northern Europe.
Resumo:
Many recent studies have found genetically differentiated populations in microorganisms despite potentially high dispersal. We designed a study to specifically examine the importance of physical dispersal barriers, i.e. geographic distance and lack of hydrological connectivity, in restricting gene flow and enhancing divergence in limnic microorganisms. We focused on the nuisance microalga Gonyostomum semen, which has recently expanded in northern Europe and differentiated into genetically distinct populations. Gonyostomum semen was sampled from six lakes distributed in two adjacent watersheds, which thereby comprised, both connected and non-connected lakes. The individual isolates were genotyped by Amplified Fragment Length Polymorphism. Several lake populations were differentiated from each other, but connectivity within watersheds could not explain the observed population genetic pattern. However, isolation by distance was moderate and might limit the gene flow among distant populations. In addition, we found low, but significant linkage disequilibrium, which indicates regular sexual recombination in this species, despite its high degree of asexual reproduction. Therefore, we conclude that the genetic properties of microalgae with occasional sexual reproduction essentially mirror regularly recombining species. Furthermore, the data indicated bottlenecks supporting the hypothesized recent range expansion of this species.
Resumo:
The early to mid-Holocene thermal optimum is a well-known feature in a wide variety of paleoclimate archives from the Northern Hemisphere. Reconstructed summer temperature anomalies from across northern Europe show a clear maximum around 6000 years before present (6 ka). For the marine realm, Holocene trends in sea-surface temperature reconstructions for the North Atlantic and Norwegian Sea do not exhibit a consistent pattern of early to mid- Holocene warmth. Sea-surface temperature records based on alkenones and diatoms generally show the existence of a warm early to mid-Holocene optimum. In contrast, several foraminifer and radiolarian based temperature records from the North Atlantic and Norwegian Sea show a cool mid- Holocene anomaly and a trend towards warmer temperatures in the late Holocene. In this paper, we revisit the foraminifer record from the Vøring Plateau in the Norwegian Sea. We also compare this record with published foraminifer based temperature reconstructions from the North Atlantic and with modelled (CCSM3) upper ocean temperatures. Model results indicate that while the seasonal summer warming of the seasurface was stronger during the mid-Holocene, sub-surface depths experienced a cooling. This hydrographic setting can explain the discrepancies between the Holocene trends exhibited by phytoplankton and zooplankton based temperature proxy records.
Resumo:
The magnitude of Late Holocene climatic variations are less significant than those that took place during ice ages and deglaciations. However, detailed knowledge about this period is vital in order to understand and model future climate scenarios both as a result of natural climate variation and the effects of global warming. Oceanic heat flux is important for the sensitive climate regime of northern Europe. Our aim is to connect hydrographical changes, reflected by the dinoflagellates cyst (dinocysts) assemblages in the sediments in the Malangen fjord, to local and regional climatic phases. Previous studies have shown that dinocyst assemblages are influenced by temperature, salinity, and the availability of nutrients (e.g. de Vernal et al. 2005, doi:10.1016/j.quascirev.2004.06.014; de Vernal et al. 2001, doi:10.1002/jqs.659; Grosfjeld et al. this volume; Rochon et al. 2008, doi:10.1016/j.marmicro.2008.04.001; Solignac et al. this volume). Dinoflagellates are mostly unicellular organisms that make up one of the main groups of phytoplankton. They are able to regulate their depth within the photic zone and to concentrate along oceanic fronts, which provide nutrient-enriched waters. The dinoflagellate cysts are the hypnozygotes of dinoflagellates naturally produced during the life cycle. Their wall is composed of a highly resistant organic material, which has a high potential to fossilize. Because dinocysts species are linked to particular abiotic and biotic parameters, the dinocyst assemblages provide information about past surface water conditions. Since each fjord has its own hydrographic setting, it is necessary to establish a firm link between the dinocyst composition of the sediment surface samples and the surface water conditions. Indeed the modern dinocyst distribution in subarctic fjords is little known. Thus, in addition to detailing dinocyst results from two shallow cores, several sediment surface samples located along a transect running from the head to the mouth of the fjord, and extending onto the shelf, are also presented.
Resumo:
Coring during Ocean Drilling Program and Deep Sea Drilling Project Legs 163, 152, 104, 81, and 38 recovered sequences of altered basalt from North Atlantic seaward-dipping reflector sequences (SDRS) erupted during the initial rifting of Greenland from northern Europe and likely associated with excessive mantle temperatures caused by an impacting mantle plume head. Cr-rich spinel is found abundantly as inclusions and groundmass crystals within the olivine-rich lavas of Hole 917A (Leg 152) cored into the Southeast Greenland SDRS, but only rarely as inclusions within plagioclase in the lavas of the Vøring Plateau SDRS, and it is absent from other cored SDRS lavas from the Rockall Plateau and Southeast Greenland. Eruptive melt compositions determined from inferred, thermodynamically-defined, spinel-melt exchange equilibria indicate that the most primitive melts represented by Hole 917A basalts have Mg/(Mg + Fe2+) at least as high as 0.70 and approach near-primary mantle melt compositions. In contrast, Cr-rich spinels from Hole 338 (Leg 38) lavas on the Vøring Plateau SDRS give evidence for melt with Mg/(Mg + Fe2+) only as high as 0.64. This study underlines that primitive melts similar to those from Hole 917A comprise only a small fraction of the eruptive North Atlantic SDRS melts, and that most SDRS basalts were, in fact, too evolved to have precipitated Cr-rich spinel, with true melt Mg/(Mg + Fe2+) likely below 0.60. The evolved nature of the SDRS basalts implies large amounts of fractionation at the base of the crust or deep within it, consistent with seismic results that indicate an abnormally thick Layer 3 underlying the SDRS.
Resumo:
The Baltic Sea is a seasonally ice-covered, marginal sea in central northern Europe. It is an essential waterway connecting highly industrialised countries. Because ship traffic is intermittently hindered by sea ice, the local weather services have been monitoring sea ice conditions for decades. In the present study we revisit a historical monitoring data set, covering the winters 1960/1961 to 1978/1979. This data set, dubbed Data Bank for Baltic Sea Ice and Sea Surface Temperatures (BASIS) ice, is based on hand-drawn maps that were collected and then digitised in 1981 in a joint project of the Finnish Institute of Marine Research (today the Finnish Meteorological Institute (FMI)) and the Swedish Meteorological and Hydrological Institute (SMHI). BASIS ice was designed for storage on punch cards and all ice information is encoded by five digits. This makes the data hard to access. Here we present a post-processed product based on the original five-digit code. Specifically, we convert to standard ice quantities (including information on ice types), which we distribute in the current and free Network Common Data Format (NetCDF). Our post-processed data set will help to assess numerical ice models and provide easy-to-access unique historical reference material for sea ice in the Baltic Sea. In addition we provide statistics showcasing the data quality. The website http://www.baltic-ocean.org hosts the post-processed data and the conversion code.
Resumo:
Oxygen isotope data from planktonic and benthic foraminifera, on a high-resolution age model (44 14C dates spanning 17,400 years), document deglacial environmental change on the southeast Alaska margin (59°33.32'N, 144°9.21'W, 682 m water depth). Surface freshening (i.e., d18O reduction of 0.8 per mil) began at 16,650 ± 170 cal years B.P. during an interval of ice proximal sedimentation, likely due to freshwater input from melting glaciers. A sharp transition to laminated hemipelagic sediments constrains retreat of regional outlet glaciers onto land circa 14,790 ± 380 cal years B.P. Abrupt warming and/or freshening of the surface ocean (i.e., additional d18O reduction of 0.9 per mil) coincides with the Bølling Interstade of northern Europe and Greenland. Cooling and/or higher salinities returned during the Allerød interval, coincident with the Antarctic Cold Reversal, and continue until 11,740 ± 200 cal years B.P., when onset of warming coincides with the end of the Younger Dryas. An abrupt 1 per mil reduction in benthic d18O at 14,250 ± 290 cal years B.P. likely reflects a decrease in bottom water salinity driven by deep mixing of glacial meltwater, a regional megaflood event, or brine formation associated with sea ice. Two laminated opal-rich intervals record discrete episodes of high productivity during the last deglaciation. These events, precisely dated here at 14,790 ± 380 to 12,990 ± 190 cal years B.P. and 11,160 ± 130 to 10,750 ± 220 cal years B.P., likely correlate to similar features observed elsewhere on the margins of the North Pacific and are coeval with episodes of rapid sea level rise. Remobilization of iron from newly inundated continental shelves may have helped to fuel these episodes of elevated primary productivity and sedimentary anoxia.
Resumo:
Changes in the Earth's orbit lead to changes in the seasonal and meridional distribution of insolation. We quantify the influence of orbitally induced changes on the seasonal temperature cycle in a transient simulation of the last 6000 years - from the mid-Holocene to today - using a coupled atmosphere-ocean general circulation model (ECHAM5/MPI-OM) including a land surface model (JSBACH). The seasonal temperature cycle responds directly to the insolation changes almost everywhere. In the Northern Hemisphere, its amplitude decreases according to an increase in winter insolation and a decrease in summer insolation. In the Southern Hemisphere, the opposite is true. Over the Arctic Ocean, decreasing summer insolation leads to an increase in sea-ice cover. The insulating effect of sea ice between the ocean and the atmosphere leads to decreasing heat flux and favors more "continental" conditions over the Arctic Ocean in winter, resulting in strongly decreasing temperatures. Consequently, there are two competing effects: the direct response to insolation changes and a sea-ice insulation effect. The sea-ice insulation effect is stronger, and thus an increase in the amplitude of the seasonal temperature cycle over the Arctic Ocean occurs. This increase is strongest over the Barents Shelf and influences the temperature response over northern Europe. We compare our modeled seasonal temperatures over Europe to paleo reconstructions. We find better agreements in winter temperatures than in summer temperatures and better agreements in northern Europe than in southern Europe, since the model does not reproduce the southern European Holocene summer cooling inferred from the paleo reconstructions. The temperature reconstructions for northern Europe support the notion of the influence of the sea-ice insulation effect on the evolution of the seasonal temperature cycle.
Resumo:
The filling up of the lake which existed in the basin of the Trentelmoor (40 km E of Hannover, Germany) - in Preboreal times was finished 2000 years ago. Since then fen vegetation has covered the former lake's surface. The postglacial development of the vegetation follows the pattern which is typical of Central Europe. However, due to the poorness of the soils around the Trentelmoor, the frequencies of some tree species differ. Beech for example never reached - for the benefit of oak - that importance which this tree species usually gains on better soils. Human impact becomes recognisable in the upper Neolithic for the first time. The area has been settled continuously, but with changing intensities, throughout the last 3000 years. When the manuscript of this paper went to press the results of two radiocarbon age determinations only were completed. An additional three determinations were completed somewhat later. See the accompanying table for results.
Resumo:
A new calibration database of census counts of organic-walled dinoflagellate cyst (dinocyst) assemblages has been developed from the analyses of surface sediment samples collected at middle to high latitudes of the Northern Hemisphere after standardisation of taxonomy and laboratory procedures. The database comprises 940 reference data points from the North Atlantic, Arctic and North Pacific oceans and their adjacent seas, including the Mediterranean Sea, as well as epicontinental environments such as the Estuary and Gulf of St. Lawrence, the Bering Sea and the Hudson Bay. The relative abundance of taxa was analysed to describe the distribution of assemblages. The best analogue technique was used for the reconstruction of Last Glacial Maximum (LGM) sea-surface temperature and salinity during summer and winter, in addition to sea-ice cover extent, at sites from the North Atlantic (n=63), Mediterranean Sea (n=1) and eastern North Pacific (n=1). Three of the North Atlantic cores, from the continental margin of eastern Canada, revealed a barren LGM interval, probably because of quasi-permanent sea ice. Six other cores from the Greenland and Norwegian seas were excluded from the compilation because of too sparse assemblages and poor analogue situation. At the remaining sites (n= 54), relatively close modern analogues were found for most LGM samples, which allowed reconstructions. The new LGM results are consistent with previous reconstructions based on dinocyst data, which show much cooler conditions than at present along the continental margins of Canada and Europe, but sharp gradients of increasing temperature offshore. The results also suggest low salinity and larger than present contrasts in seasonal temperatures with colder winters and more extensive sea-ice cover, whereas relatively warm conditions may have prevailed offshore in summer. From these data, we hypothesise low thermal inertia in a shallow and low-density surface water layer.