13 resultados para Non-model organism
em Publishing Network for Geoscientific
Resumo:
Studies on the consequences of ocean acidification for the marine ecosystem have revealed behavioural changes in coral reef fishes exposed to sustained near-future CO2 levels. The changes have been linked to altered function of GABAergic neurotransmitter systems, because the behavioural alterations can be reversed rapidly by treatment with the GABAA receptor antagonist gabazine. Characterization of the molecular mechanisms involved would be greatly aided if these can be examined in a well-characterized model organism with a sequenced genome. It was recently shown that CO2-induced behavioural alterations are not confined to tropical species, but also affect the three-spined stickleback, although an involvement of the GABAA receptor was not examined. Here, we show that loss of lateralization in the stickleback can be restored rapidly and completely by gabazine treatment. This points towards a worrying universality of disturbed GABAA function after high-CO2 exposure in fishes from tropical to temperate marine habitats. Importantly, the stickleback is a model species with a sequenced and annotated genome, which greatly facilitates future studies on underlying molecular mechanisms.
Resumo:
Increased seawater pCO2, and in turn 'ocean acidification' (OA), is predicted to profoundly impact marine ecosystem diversity and function this century. Much research has already focussed on calcifying reef-forming corals (Class: Anthozoa) that appear particularly susceptible to OA via reduced net calcification. However, here we show that OA-like conditions can simultaneously enhance the ecological success of non-calcifying anthozoans, which not only play key ecological and biogeochemical roles in present day benthic ecosystems but also represent a model organism should calcifying anthozoans exist as less calcified (soft-bodied) forms in future oceans. Increased growth (abundance and size) of the sea anemone (Anemonia viridis) population was observed along a natural CO2 gradient at Vulcano, Italy. Both gross photosynthesis (PG) and respiration (R) increased with pCO2 indicating that the increased growth was, at least in part, fuelled by bottom up (CO2 stimulation) of metabolism. The increase of PG outweighed that of R and the genetic identity of the symbiotic microalgae (Symbiodinium spp.) remained unchanged (type A19) suggesting proximity to the vent site relieved CO2 limitation of the anemones' symbiotic microalgal population. Our observations of enhanced productivity with pCO2, which are consistent with previous reports for some calcifying corals, convey an increase in fitness that may enable non-calcifying anthozoans to thrive in future environments, i.e. higher seawater pCO2. Understanding how CO2-enhanced productivity of non- (and less-) calcifying anthozoans applies more widely to tropical ecosystems is a priority where such organisms can dominate benthic ecosystems, in particular following localized anthropogenic stress.
Resumo:
Increasing atmospheric CO2 concentration is responsible for progressive ocean acidification, ocean warming as well as decreased thickness of upper mixing layer (UML), thus exposing phytoplankton cells not only to lower pH and higher temperatures but also to higher levels of solar UV radiation. In order to evaluate the combined effects of ocean acidification, UV radiation and temperature, we used the diatom Phaeodactylum tricornutum as a model organism and examined its physiological performance after grown under two CO2 concentrations (390 and 1000 µatm) for more than 20 generations. Compared to the ambient CO2 level (390 µatm), growth at the elevated CO2 concentration increased non-photochemical quenching (NPQ) of cells and partially counteracted the harm to PS II (photosystem II) caused by UV-A and UV-B. Such an effect was less pronounced under increased temperature levels. The ratio of repair to UV-B induced damage decreased with increased NPQ, reflecting induction of NPQ when repair dropped behind the damage, and it was higher under the ocean acidification condition, showing that the increased pCO2 and lowered pH counteracted UV-B induced harm. As for photosynthetic carbon fixation rate which increased with increasing temperature from 15 to 25 °C, the elevated CO2 and temperature levels synergistically interacted to reduce the inhibition caused by UV-B and thus increase the carbon fixation.
Resumo:
Due to the ongoing effects of climate change, phytoplankton are likely to experience enhanced irradiance, more reduced nitrogen, and increased water acidity in the future ocean. Here, we used Thalassiosira pseudonana as a model organism to examine how phytoplankton adjust energy production and expenditure to cope with these multiple, interrelated environmental factors. Following acclimation to a matrix of irradiance, nitrogen source, and CO2 levels, the diatom's energy production and expenditures were quantified and incorporated into an energetic budget to predict how photosynthesis was affected by growth conditions. Increased light intensity and a shift from inline image to inline image led to increased energy generation, through higher rates of light capture at high light and greater investment in photosynthetic proteins when grown on inline image. Secondary energetic expenditures were adjusted modestly at different culture conditions, except that inline image utilization was systematically reduced by increasing pCO2. The subsequent changes in element stoichiometry, biochemical composition, and release of dissolved organic compounds may have important implications for marine biogeochemical cycles. The predicted effects of changing environmental conditions on photosynthesis, made using an energetic budget, were in good agreement with observations at low light, when energy is clearly limiting, but the energetic budget over-predicts the response to inline image at high light, which might be due to relief of energetic limitations and/or increased percentage of inactive photosystem II at high light. Taken together, our study demonstrates that energetic budgets offered significant insight into the response of phytoplankton energy metabolism to the changing environment and did a reasonable job predicting them.
Resumo:
Epsilonproteobacteria have been found globally distributed in marine anoxic/sulfidic areas mediating relevant transformations within the sulfur and nitrogen cycles. In the Baltic Sea redox zones, chemoautotrophic epsilonproteobacteria mainly belong to the Sulfurimonas gotlandica GD17 cluster for which recently a representative strain, S. gotlandica GD1T, could be established as a model organism. In this study, the potential effects of changes in dissolved inorganic carbon (DIC) and pH on S. gotlandica GD1T were examined. Bacterial cell abundance within a broad range of DIC concentrations and pH values were monitored and substrate utilization was determined. The results showed that the DIC saturation concentration for achieving maximal cell numbers was already reached at 800 µmol/l, which is well below in situ DIC levels. The pH optimum was between 6.6 and 8.0. Within a pH range of 6.6-7.1 there was no significant difference in substrate utilization; however, at lower pH values maximum cell abundance decreased sharply and cell-specific substrate consumption increased.
Resumo:
The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularide A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing besides higher production levels faster growth and differences in pellet formation. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of this fungus and its mutant. For this purpose, an optimised protein extraction protocol was established. Here, we show the first proteome study of a marine fungus. In total, 4759 proteins were identified. The central metabolic pathway of LF580 could be mapped by using KEGG pathway analysis and GO annotation. Using iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to a limited nutrient availability in wild type strain due to a strong pellet formation. This information can be applied to optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum.
Resumo:
Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased 50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors.
Resumo:
The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being well understood. In this work, the effects of exposure to elevated pCO2 were characterized in gills and hepatopancreas of Crassostrea gigas using integrated proteomic and metabolomic approaches. Metabolic responses indicated that high CO2 exposure mainly caused disturbances in energy metabolism and osmotic regulation marked by differentially altered ATP, glucose, glycogen, amino acids and organic osmolytes in oysters, and the depletions of ATP in gills and the accumulations of ATP, glucose and glycogen in hepatopancreas accounted for the difference in energy distribution between these two tissues. Proteomic responses suggested that OA could not only affect energy and primary metabolisms, stress responses and calcium homeostasis in both tissues, but also influence the nucleotide metabolism in gills and cytoskeleton structure in hepatopancreas. This study demonstrated that the combination of proteomics and metabolomics could provide an insightful view into the effects of OA on oyster C. gigas. BIOLOGICAL SIGNIFICANCE: The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being understood. To our knowledge, few studies have focused on the responses induced by pCO2 at both protein and metabolite levels. The pacific oyster C. gigas, widely distributed throughout most of the world's oceans, is a model organism for marine environmental science. In the present study, an integrated metabolomic and proteomic approach was used to elucidate the effects of ocean acidification on Pacific oyster C. gigas, hopefully shedding light on the physiological responses of marine mollusk to the OA stress.
Resumo:
The majority of benthic marine invertebrates have a complex life cycle, during which the pelagic larvae select a suitable substrate, attach to it, and then metamorphose into benthic adults. Anthropogenic ocean acidification (OA) is postulated to affect larval metamorphic success through an altered protein expression pattern (proteome structure) and post-translational modifications. To test this hypothesis, larvae of an economically and ecologically important barnacle species Balanus amphitrite, were cultured from nauplius to the cyprid stage in the present (control) and in the projected elevated concentrations of CO2 for the year 2100 (the OA treatment). Cyprid response to OA was analyzed at the total proteome level as well as two protein post-translational modification (phosphorylation and glycosylation) levels using a 2-DE based proteomic approach. The cyprid proteome showed OA-driven changes. Proteins that were differentially up or down regulated by OA come from three major groups, namely those related to energy-metabolism, respiration, and molecular chaperones, illustrating a potential strategy that the barnacle larvae may employ to tolerate OA stress. The differentially expressed proteins were tentatively identified as OA-responsive, effectively creating unique protein expression signatures for OA scenario of 2100. This study showed the promise of using a sentinel and non-model species to examine the impact of OA at the proteome level.
Resumo:
Climate change is expected to bring about alterations in the marine physical and chemical environment that will induce changes in the concentration of dissolved CO2 and in nutrient availability. These in turn are expected to affect the physiological performance of phytoplankton. In order to learn how phytoplankton respond to the predicted scenario of increased CO2 and decreased nitrogen in the surface mixed layer, we investigated the diatom Phaeodactylum tricornutum as a model organism. The cells were cultured in both low CO2 (390 µatm) and high CO2 (1000 µatm) conditions at limiting (10 µmol/L) or enriched (110 µmol/L) nitrate concentrations. Our study shows that nitrogen limitation resulted in significant decreases in cell size, pigmentation, growth rate and effective quantum yield of Phaeodactylum tricornutum, but these parameters were not affected by enhanced dissolved CO2 and lowered pH. However, increased CO2 concentration induced higher rETRmax and higher dark respiration rates and decreased the CO2 or dissolved inorganic carbon (DIC) affinity for electron transfer (shown by higher values for K1/2 DIC or K1/2 CO2). Furthermore, the elemental stoichiometry (carbon to nitrogen ratio) was raised under high CO2 conditions in both nitrogen limited and nitrogen replete conditions, with the ratio in the high CO2 and low nitrate grown cells being higher by 45% compared to that in the low CO2 and nitrate replete grown ones. Our results suggest that while nitrogen limitation had a greater effect than ocean acidification, the combined effects of both factors could act synergistically to affect marine diatoms and related biogeochemical cycles in future oceans.
Resumo:
Anthropogenic CO2 emissions are acidifying the world's oceans. A growing body of evidence is showing that ocean acidification impacts growth and developmental rates of marine invertebrates. Here we test the impact of elevated seawater pCO2 (129 Pa, 1271 µatm) on early development, larval metabolic and feeding rates in a marine model organism, the sea urchin Strongylocentrotus purpuratus. Growth and development was assessed by measuring total body length, body rod length, postoral rod length and posterolateral rod length. Comparing these parameters between treatments suggests that larvae suffer from a developmental delay (by ca. 8%) rather than from the previously postulated reductions in size at comparable developmental stages. Further, we found maximum increases in respiration rates of + 100 % under elevated pCO2, while body length corrected feeding rates did not differ between larvae from both treatments. Calculating scope for growth illustrates that larvae raised under high pCO2 spent an average of 39 to 45% of the available energy for somatic growth, while control larvae could allocate between 78 and 80% of the available energy into growth processes. Our results highlight the importance of defining a standard frame of reference when comparing a given parameter between treatments, as observed differences can be easily due to comparison of different larval ages with their specific set of biological characters.