2 resultados para Non-directional graph
em Publishing Network for Geoscientific
Resumo:
An autonomous vessel, the Offshore Sensing Sailbuoy, was used for wave measurements near the Ekofisk oil platform complex in the North Sea (56.5 N, 3.2 E, operated by ConocoPhilllips) from 6 to 20 November 2015. Being 100% wind propelled, the Sailbuoy has two-way communication via the Iridium network and has the capability for missions of six months or more. It has previously been deployed in the Arctic, Norwegian Sea and the Gulf of Mexico, but this was the first real test for wave measurements. During the campaign it held position about 20km northeast of Ekofisk (on the lee side) during rough conditions. Mean wind speed measured at Ekofisk during the campaign was near 9.8m/s, with a maximum of 20.4m/s, with wind mostly from south and south west. A Datawell MOSE G1000 GPS based 2Hz wave sensor was mounted on the Sailbuoy. Mean significant wave height (Hs 1hr) measured was 3m, whereas maximum Hs was 6m. Mean wave period was 7.7s, while maximum wave height, Hmax, was 12.6m. These measurements have been compared with non-directional Waverider observations at the Ekofisk complex. Mean Hs at Ekofisk was 3.1m, while maximum Hs was 6.5m. Nevertheless, the correlation between the two measurements was high (97%). Spectra comparison was also good, except for low Hs (~1m), where the motion of the vessel seemed to influence the measurements. Nevertheless, the Sailbuoy performed well during this campaign, and results suggests that it is a suitable platform for wave measurements in rather rough sea conditions.
Resumo:
Twenty-four manganese nodules from the surface of the sea floor and fifteen buried nodules were studied. With three exceptions, the nodules were collected from the area covered by Valdivia Cruise VA 04 some 1200 nautical miles southeast of Hawaii. Age determinations were made using the ionium method. In order to get a true reproduction of the activity distribution in the nodules, they were cut in half and placed for one month on nuclear emulsion plates to determine the alpha-activity of the ionium and its daughter products. Special methods of counting the alpha-tracks resolution to depth intervals of 0.125 mm. For the first time it was possible to resolve zones of rapid growth (impulse growth) with growth rates, s > 50 mm/106 yr and interruptions in growth. With few exceptions the average rate of growth of all nodules was surprisingly uniform at 4-9 mm/10 yr. No growth could be recognized radioactively in the buried nodules. One exceptional nodule has had recent impulse growth and, in the material formed, the ionium is not yet in equilibrium with its daughter products. Individual layers in one nodule from the Indian Ocean could be dated and an average time interval of t = 2600±400 yr was necessary to form one layer. The alternation between iron and manganese-rich parts of the nodules was made visible by colour differences resulting from special treatment of cut surfaces with HCl vapour. The zones of slow growth of one nodule are relatively enriched in iron. Earlier attempts to find paleomagnetic reversals in manganese nodules have been continued. Despite considerable improvement in areal resolution, reversals were not detected in the nodules studied. Comparisons of the surface structure, microstructure in section and the radiometric dating show that there are erosion surfaces and growth surfaces on the outer surfaces of the manganese nodules. The formation of cracks in the nodules was studied in particular. The model of age-dependent nodule shrinkage and cracking surprisingly indicates that the nodules break after exceeding a certain age and/or size. Consequently, the breaking apart of manganese nodules is a continuous process not of catastrophic or discontinuous origin. The microstructure of the nodules exhibits differences in the mechanism of accretion and accretion rate of material, shortly referred to as accretion form. Thus non-directional growth inside the nodules as well as a directional growth may be observed. Those nodules with large accretion forms have grown faster than smaller ones. Consequently, parallel layers indicate slow growth. The upper surfaces of the nodules, protruding into the bottom water appear to be more prone to growth disturbances than the lower surfaces, immersed in the sediment. Features of some nodules show, that as they develop, they neither turned nor rolled. Yet unknown is the mechanism that keeps the nodules at the surface during continuous sedimentation. All in all, the nodules remain the objects of their own distinctive problems. The hope of using them as a kind of history book still seems to be very remote.