266 resultados para Non-destructive testing

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first complete cyclic sedimentary successions for the early Paleogene from drilling multiple holes have been retrieved during two ODP expeditions: Leg 198 (Shatsky Rise, NW Pacific Ocean) and Leg 208 (Walvis Ridge, SE Atlantic Ocean). These new records allow us to construct a comprehensive astronomically calibrated stratigraphic framework with an unprecedented accuracy for both the Atlantic and the Pacific Oceans covering the entire Paleocene epoch based on the identification of the stable long-eccentricity cycle (405-kyr). High resolution X-ray fluorescence (XRF) core scanner and non-destructive core logging data from Sites 1209 through1211 (Leg 198) and Sites 1262, 1267 (Leg 208) are the basis for such a robust chronostratigraphy. Former investigated marine (ODP Sites 1001 and 1051) and land-based (e.g., Zumaia) sections have been integrated as well. The high-fidelity chronology is the prerequisite for deciphering mechanisms in relation to prominent transient climatic events as well as completely new insights into Greenhouse climate variability in the early Paleogene. We demonstrate that the Paleocene epoch covers 24 long eccentricity cycles. We also show that no definite absolute age datums for the K/Pg boundary or the Paleocene - Eocene Thermal Maximum (PETM) can be provided by now, because of still existing uncertainties in orbital solutions and radiometric dating. However, we provide two options for tuning of the Paleocene which are only offset by 405-kyr. Our orbitally calibrated integrated Leg 208 magnetostratigraphy is used to revise the Geomagnetic Polarity Time Scale (GPTS) for Chron C29 to C25. We established a high-resolution calcareous nannofossil biostratigraphy for the South Atlantic which allows a much more detailed relative scaling of stages with biozones. The re-evaluation of the South Atlantic spreading rate model features higher frequent oscillations in spreading rates for magnetochron C28r, C27n, and C26n.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Multi-Sensor Core Logger (MSCL) enables non-destructive, quasi-continuous measuroments of physical properties, reducing the time needed for discrete sample analysis. Density, compressional wave velocity (Vp), and magnetic susceptibility are measured on water-saturated sediment cores. Rapid variations in the lithology can thus be more easily recognized. The advantages of MSCL measurements over traditional sedimentological investigation methods are illustrated using several examples. Density-Vp relationships provide detailed lithological information prior to splitting the sediment cores. In terrigenous sediments, density increases with Vp, whereas in biogenic sediments it decreases. In biogenic sediments in the South Atlantic, low densities and high Vp are associated with high opal content. In biogenic sediments in the Peru Basin, density increases with carbonate content. Carbonate, which is very important for deep-sea environmental protection and for paleoclimatic studies, can be determined quantitatively from MSCL measurements in this area. In terrigenous sediments in the Bengal Fan, the acoustic impedance (the product of density and Vp) increases with grain size. There, the grain-size distribution can be rapidly derived from the acoustic impedance. Moreover, in hemipelagic sediments in the Bengal Fan, it is possible to correlate variations in magnetic susceptibility with cyclic changes in the earth's orbital parameters - an important prerequisite for detailed stratigraphic studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Empirical relationships between physical properties determined non-destructively by core logging devices and calibrated by carbonate and opal measurements determined on discrete samples allow extraction of carbonate and opal records from the non-destructive measurements in biogenic settings. Contents of detrital material can be calculated as a residual. For carbonate and opal the correlation coefficients (r) are 0.954 and ?0.916 for sediment density, ?0.816 and 0.845 for compressional-wave velocity, 0.908 and ?0.942 for acoustic impedance, and 0.886 and ?0.865 for sediment color (lightness). Carbonate contents increase in concert with increasing density and acoustic impedance, decreasing velocity and lighter sediment color. The opposite is true for opal. The advantages of deriving the sediment composition quantitatively from core logging are: (i) sampling resolution is increased significantly, (ii) non-destructive data can be gathered rapidly, and (iii) laboratory work on discrete samples can be reduced. Applied to paleoceanographic problems, this method offers the opportunity of precise stratigraphic correlations and of studying processes related to biogenic sedimentation in more detail. Density is most promising because it is most strongly affected by changes in composition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-resolution records of glacial-interglacial variations in biogenic carbonate, opal, and detritus (derived from non-destructive core log measurements of density, P-wave velocity and color; r >= 0.9) from 15 sediment sites in the eastern equatorial (sampling resolution is ~1 kyr) clear response to eccentricity and precession forcing. For the Peru Basin, we generate a high-resolution (21 kyr increment) orbitally-based chronology for the last 1.3 Ma. Spectral analysis indicates that the 100 kyr cycle became dominant at roughly 1.2 Ma, 200-300 kyr earlier than reported for other paleoclimatic records. The response to orbital forcing is weaker since the Mid-Brunhes Dissolution Event (at 400 ka). A west-east reconstruction of biogenic sedimentation in the Peru Basin (four cores; 91-85°W) distinguishes equatorial and coastal upwelling systems in the western and eastern sites, respectively. A north-south reconstruction perpendicular to the equatorial upwelling system (11 cores, 11°N-°3S) shows high carbonate contents (>= 50%) between 6°N and 4°S and highly variable opal contents between 2°N and 4°S. Carbonate cycles B-6, B-8, B-10, B-12, B-14, M-2, and M-6 are well developed with B-10 (430 ka) as the most prominent cycle. Carbonate highs during glacials and glacial-interglacial transitions extended up to 400 km north and south compared to interglacial or interglacial^glacial carbonate lows. Our reconstruction thus favors glacial-interglacial expansion and contraction of the equatorial upwelling system rather than shifting north or south. Elevated accumulation rates are documented near the equator from 6°N to 4°S and from 2°N to 4°S for carbonate and opal, respectively. Accumulation rates are higher during glacials and glacial-interglacial transitions in all cores, whereas increased dissolution is concentrated on Peru Basin sediments close to the carbonate compensation depth and occurred during interglacials or interglacial-glacial transitions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated surficial sediments for physico-chemical composition from numerous sites of seven study areas in the manganese nodule field of the northern Peru Basin as part of a deep-sea environmental study. Major results from this study are strong variability with respect to water depth, productivity in surface waters, locality, bottom water flow, and seafloor topography. Sediment sites are located mostly in 3900 to 4300 m water depth between the lysocline and the carbonate compensation depth (CCD). Large fluctuations in carbonate content (0% to 80%) determine sediment density and compressional-wave velocity, and, by dilution, contents of opal and non-biogenic material. Mass accumulation rates of biogenic components as well as geochemical proxies (barium and phosphorus) distinguish areas of higher productivity in the northwest near equatorial upwelling and in the northeast close to coastal upwelling, from areas of lower productivity in the west and south. Comparisons between the central Peru Basin area (Discol) and western Peru Basin area (Sediperu) reveals, for the Sediperu area, a shallower CCD, more carbonate but less opal, organic carbon, and non-biogenic material in sediments at the same water depth as well as larger down-core fluctuations of organic carbon and MnO2. Bottom water flow in the abyssal hill topography causes winnowing of material from summits of seamounts and ridges, where organic carbon preservation is poor, to basins where organic carbon preservation is better. Down-core measurements in box cores indicate a three-fold division in the upper 50 cm of the sediment column. An uppermost semi-liquid top layer is dark brown, 5-15 cm thick and contains most of the ferro-manganese nodules. A 5-15 cm thick transition zone of light sediment color has increasing shear strength, lowest opal contents and compressional-wave velocities, but highest carbonate contents and sediment densities. The lowermost layer contains stiffer light gray sediments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The distribution of seagrass and associated benthic communities on the reef and lagoon of Low Isles, Great Barrier Reef, was mapped between the 29 July and 29 August 1997. For this survey, observers walked or free-dived at survey points positioned approximately 50 m apart along a series of transects. Visual estimates of above-ground seagrass biomass and % cover of each benthos and substrate type were recorded at each survey point. A differential handheld global positioning system (GPS) was used to locate each survey point (accuracy ±3m). A total of 349 benthic survey points were examined. To assist with mapping meadow/habitat type boundaries, an additional 177 field points were assessed and a georeferenced 1:12,000 aerial photograph (26th August 1997) was used as a secondary source of information. Bathymetric data (elevation below Mean Sea Level) measured at each point assessed and from Ellison (1997) supplemented information used to determine boundaries, particularly in the subtidal lagoon. 127.8 ±29.6 hectares was mapped. Seagrass and associated benthic community data was derived by haphazardly placing 3 quadrats (0.25m**2) at each survey point. Seagrass above ground biomass (standing crop, grams dry weight (g DW m**-2)) was determined within each quadrat using a non-destructive visual estimates of biomass technique and the seagrass species present identified. In addition, the cover of all benthos was measured within each of the 3 quadrats using a systematic 5 point method. For each quadrat, frequency of occurrence for each benthic category was converted to a percentage of the total number of points (5 per quadrat). Data are presented as the average of the 3 quadrats at each point. Polygons of discrete seagrass meadow/habitat type boundaries were created using the on-screen digitising functions of ArcGIS (ESRI Inc.), differentiated on the basis of colour, texture, and the geomorphic and geographical context. The resulting seagrass and benthic cover data of each survey point and for each seagrass meadow/habitat type was linked to GPS coordinates, saved as an ArcMap point and polygon shapefile, respectively, and projected to Universal Transverse Mercator WGS84 Zone 55 South.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Endolithic bioerosion is difficult to analyse and to describe, and it usually requires damaging of the sample material. Sponge erosion (Entobia) may be one of the most difficult to evaluate as it is simultaneously macroscopically inhomogeneous and microstructurally intricate. We studied the bioerosion traces of the two Australian sponges Cliona celata Grant, 1826 (sensu Schönberg 2000) and Cliona orientalis Thiele, 1900 with a newly available radiographic technology: high resolution X-ray micro-computed tomography (MCT). MCT allows non-destructive visualisation of live and dead structures in three dimensions and was compared to traditional microscopic methods. MCT and microscopy showed that C. celata bioerosion was more intense in the centre and branched out in the periphery. In contrast, C. orientalis produced a dense, even trace meshwork and caused an overall more intense erosion pattern than C. celata. Extended pioneering filaments were not usually found at the margins of the studied sponge erosion, but branches ended abruptly or tapered to points. Results obtained with MCT were similar in quality to observations from transparent optical spar under the dissecting microscope. Microstructures could not be resolved as well as with e.g. scanning electron microscopy (SEM). Even though sponge scars and sponge chips were easily recognisable on maximum magnification MCT images, they lacked the detail that is available from SEM. Other drawbacks of MCT involve high costs and presently limited access. Even though MCT cannot presently replace traditional techniques such as corrosion casts viewed by SEM, we obtained valuable information. Especially for the possibility to measure endolithic pore volumes, we regard MCT as a very promising tool that will continue to be optimised. A combination of different methods will produce the best results in the study of Entobia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bulk chemical fine-grained sediment compositions from southern Victoria Land glacimarine sediments provide significant constraints on the reconstruction of sediment provenance models in the McMurdo Sound during Late Cenozoic time. High-resolution (~ 1 ka) geochemical data were obtained with a non-destructive AVAATECH XRF Core Scanner (XRF-CS) on the 1285 m long ANDRILL McMurdo Ice Shelf Project (MIS) sediment core AND-1B. This data set is complemented by high-precision chemical analyses (XRF and ICP-OES) on discrete samples. Statistical analyses reveal three geochemical facies which are interpreted to represent the following sources for the sediments recovered in the AND-1B core: 1) local McMurdo Volcanic Group (MVG) rocks, 2) Transantarctic Mountain rocks west of Ross Island (W TAM), and 3) Transantarctic Mountain rocks from more southerly areas (S TAM). Data indicate in combination with other sediment facies analyses (McKay et al., 2009, doi:10.1130/B26540.1) and provenance scenarios (Talarico and Sandroni, 2009, doi:10.1016/j.gloplacha.2009.04.007) that diamictites at the drill site are largely dominated by local sources (MVG) and are interpreted to indicate cold polar conditions with dry-based ice. MVG is interpreted to indicate cold polar condition with dry-based ice. A mixture of MVG and W TAM is interpreted to represent polar conditions and the S TAM facies is interpreted to represent open-marine conditions. Down-core variations in geochemical facies in the AND-1B core are interpreted to represent five major paleoclimate phases over the past 14 Ma. Cold polar conditions with major MVG influence occur below 1045 mbsf and above 120 mbsf. A section of warmer climate conditions with extensive peaks of S TAM influence characterizes the rest of the core, which is interrupted by a section from 525 to 855 mbsf of alternating influences of MVG and W TAM.