19 resultados para Non-chemical weed control

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present microfouling and bioassay data were used to analyse whether microfouling control of F. vesiculosus and F. serratus against prokaryotes and pennate diatoms fluctuates with season and correlates with in situ microfouling pressure. The two perennial brown macroalgae Fucus vesiculosus and Fucus serratus were sampled monthly from mixed stands at a depth of 0.5 m under mid water level at Bülk, outer Kiel Fjord, Germany (54°27'21 N / 10°11'57 E) within a one-year filed study (August 2012 - July 2013). Microfouler recruitment on glass (reference surface, n = 9 per month) and on both Fucus species (n = 9 per month and Fucus species) was determined monthly. Microfouling control strength of Fucus surface metabolites was tested by an in situ bioassay approach (n = 6 per month and species). For details see related publication Rickert et al. 2016, DOI: 10.1007/s00227-016-2970-3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iron (Fe) can limit phytoplankton productivity in approximately 40% of the global ocean, including in high-nutrient, low-chlorophyll (HNLC) waters. However, there is little information available on the impact of CO2-induced seawater acidification on natural phytoplankton assemblages in HNLC regions. We therefore conducted an on-deck experiment manipulating CO2 and Fe using Fe-deficient Bering Sea water during the summer of 2009. The concentrations of CO2 in the incubation bottles were set at 380 and 600 ppm in the non-Fe-added (control) bottles and 180, 380, 600, and 1000 ppm in the Fe-added bottles. The phytoplankton assemblages were primarily composed of diatoms followed by haptophytes in all incubation bottles as estimated by pigment signatures throughout the 5-day (control) or 6-day (Fe-added treatment) incubation period. At the end of incubation, the relative contribution of diatoms to chlorophyll a biomass was significantly higher in the 380 ppm CO2 treatment than in the 600 ppm treatment in the controls, whereas minimal changes were found in the Fe-added treatments. These results indicate that, under Fe-deficient conditions, the growth of diatoms could be negatively affected by the increase in CO2 availability. To further support this finding, we estimated the expression and phylogeny of rbcL (which encodes the large subunit of RuBisCO) mRNA in diatoms by quantitative reverse transcription polymerase chain reaction (PCR) and clone library techniques, respectively. Interestingly, regardless of Fe availability, the transcript abundance of rbcL decreased in the high CO2 treatments (600 and 1000 ppm). The present study suggests that the projected future increase in seawater pCO2 could reduce the RuBisCO transcription of diatoms, resulting in a decrease in primary productivity and a shift in the food web structure of the Bering Sea.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The first data on chemical composition of nonreef-building non-zooxanthellate deep-sea corals presented in this publication allow us to identify following tendencies manifested in the biomineralization process. Comparison of concentration levels of some chemical elements in scleractinian corals and ambient ocean waters suggests that corals do not accumulate K in the process of biomineralization and weakly accumulate Mg, whereas Ca, Sr, Si, Al, Ti, Mn, Zn, Cu, Cd, Pb, and Fe are concentrated in skeletons of corals with enrichment coefficients of 10**3 to 10**7. Correlations between components contained in the skeletons of scleractinian corals suggest that the source of Al, Si, Fe, and Ti in them is the clayey constituent of bottom sediments and zooplankton, while trace elements are likely accumulated via bioassimilation from seawater. Such elements as Mn, Sr, Pb, and Cd can structurally substitute Ca in calcite and aragonite. Variations in concentrations of the elements in coral skeletons depending on their habitat depths are fairly significant. As could be expected Ca and Mg concentrations are prone to decrease with depth (R = -0.55 and -0.51, respectively), which can possibly be caused by partial dissolution of carbonate skeletons with increasing depth, whereas the Sr/Ca ratio does not depend on depth.