19 resultados para New stage

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a new high resolution speleothem stable isotope record from the Villars Cave (SW-France) that covers part of marine isotope stage (MIS) 3. The Vil14 stalagmite grew between ~52 and 29 ka. The d13C profile is used as a palaeoclimate proxy and clearly shows the interstadial substages 13, 12 and 11. The new results complement and corroborate previously published stalagmite records Vil9 and Vil27 from the same site. The Vil14 stalagmite chronology is based on 12 Th-U dating by MC-ICP-MS and 3 by TIMS. A correction for detrital contamination was done using the 230Th/232Th activity ratio measured on clay collected in Villars Cave. The Vil14 results reveal that the onset of Dansgaard-Oeschger (DO) events 13 and 12 occurred at ~49.8 ka and ~47.8 ka, respectively. Within uncertainties, this is coherent with the latest NorthGRIP time scale (GICC05-60 ka) and with speleothem records from Central Alps. Our data show an abrupt d13C increase at the end of DO events 14 to 12 which coincides with a petrographical discontinuity probably due to a rapid cooling. As observed for Vil9 and Vil27, Vil14 growth significantly slowed down after ~ 42 ka and finally stopped ~ 29 ka ago where the d13C increase suggests a strong climate deterioration that coincides with both North Atlantic sea level and sea surface temperature drop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abundance records of planktonic foraminifera (>150 µm) from the upper 520 m of ODP Site 1073 (Hole 1073A, Leg 174A, 639 m water depth) have been integrated with SPECMAP-derived isotope stratigraphy, percentage of calcium carbonate, and coarse sediment fraction data in order to investigate the Pleistocene climatic history of the New Jersey margin. Six planktonic taxonomic groups dominate the foraminiferal assemblage at Site 1073: Neogloboquadrina pachyderma (d) (mean 33.8%), Turborotalita quinqueloba (18.5%), N. pachyderma (s) (18.4%), Globigerina bulloides group (11.4%), Globorotalia inflata group (9.4%), and Globigerinita glutinata (4.1%). Based on the distributions of these six foraminiferal groups, the Pleistocene section can be divided into three paleoclimatic intervals: Interval I (intermediate) corresponds to the Quaternary sediments from sequence boundary pp1 to the seafloor (79.5-0 mbsf; Emiliania huxleyi acme [85 ka] at 72 mbsf); Interval II (warm) occurs between sequence boundaries pp3 and pp1 (325-79.5 mbsf; last occurrence of Pseudoemiliania lacunosa [460 ka] at 330 mbsf); and Interval III (coldest) occurs between sequence boundaries pp4 and pp3 (520-325 mbsf; Calcareous nannofossils and dinocysts in proximity to pp4 indicate that the sedimentary record for 0.9-1.7 Ma is either missing altogether or highly condensed within the basal few meters of the section). Neogloboquadrina pachyderma (d) displays eight peaks of abundance which correlate, for the most part, with depleted delta18O values, increases in calcium carbonate percentages, low coarse fraction percentages, increased planktonic fragmentation (greater dissolution), and low N. pachyderma (s) abundances. These intervals are interpreted as representing warmer/interglacial conditions. Neogloboquadrina pachyderma (s) displays seven peaks of abundance which correlate, for the most part, with delta18O increases, decreases in calcium carbonate percentages, increases in coarse fraction percentages, and low N. pachyderma (d) abundances. These intervals are interpreted as representing cooler/glacial conditions. In Interval III, a faunal response to relative changes in sea-surface temperature is reflected by abundance peaks in Neogloboquadrina pachyderma (d), followed by Turborotalita quinqueloba and then N. pachyderma (s) (proceeding from warmest to coolest, respectively). This tripartite response is consistent with the oxygen isotope record and, although not as clear, also occurs in Intervals I and II. Six peaks/peak intervals of Globigerina bulloides abundance are closely matched by peaks in Globigerinita glutinata and occur within oxygen isotope stage (OIS) 2 (latter part) 3, 4, 5, 8, 9, 13(?), 14(?), and 15(?). We speculate that these intervals reflect increased upwelling and nutrient levels during both glacials and interglacials. Eight peak intervals of Globorotalia inflata show a general inverse correlation with G. bulloides and may reflect lowered nutrient and warmer surface waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rangitawa Tephra is an important stratigraphic marker in mid-Pleistocene marine and terrestrial sequences in New Zealand and adjacent ocean basins. Zircon fission track ages (ZFTA) on Rangitawa Tephra from five sites in the southern North Island yield mean site ages in the range 0.34 to 0.40 Ma with a weighted mean of 0.35 + 0.04 Ma (1 sigma). On the basis of glass shard major-element chemistry, ferromagnesian mineralogy, ZFTA and similarity of paleomagnetic dates of proposed tephra correlalives in deep-sea cores, it is concluded that Rangitawa Tephra represents a major eruptive event in the Taupo Volcanic Zone most probably associated with eruption of the Whakamaru-group ignimbrites (0.35 0.39 Ma) or less likely the Paeroa Range Group Ignimbrites (0.36 -0.38 Ma). Pollen analyses from two onshore sites, together with regional loess stratigraphy, show that Rangitawa Tephra was erupted during a glacial period. The ZFTA and previously reported oxygen isotope data from DSDP Site 594 indicate that Rangitawa Tephra was erupted near the end of oxygen isotope stage 10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study was inspired by information on Paleozoic andesites, dacites, and diabases on the Belkovsky Island in the 1974 geological survey reports used to reconstruct tectonic evolution of the continental block comprising the New Siberian Islands and the bordering shelf. We did not find felsic volcanics or Middle Paleozoic intrusions in the studied area of the island. Igneous rocks are mafic subvolcanic intrusions including dikes, randomly shaped bodies, explosion breccias, and peperites. They belong to the tholeiitic series and are similar to Siberian traps in petrography and trace-element compositions, with high LREE and LILE and prominent Nb negative anomalies. The island arc affinity is due to continental crust contamination of mantle magma and its long evolution in chambers at different depths. K-Ar biotite age (252+/-5 Ma) of magmatism indicates that it was coeval to the main stage of trap magmatism in the Siberian craton at the Permian-Triassic boundary. The terrane including the New Siberian Islands occurred on the periphery of the Siberian trap province where magmatism acted in rifting environment. Magma intruded into semiliquid wet sediments at shallow depths shortly after their deposition. Therefore, the exposed Paleozoic section in Belkovsky Island may include Permian or possibly Lower Triassic sediments of younger ages than it was believed earlier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paleobathymetric assessments of fossil foraminiferal faunas play a significant role in the analysis of the paleogeographic, sedimentary, and tectonic histories of New Zealand's Neogene marine sedimentary basins. At depths >100 m, these assessments often have large uncertainties. This study, aimed at improving the precision of paleodepth assessments, documents the present-day distribution of deep-sea foraminifera (>63 µm) in 66 samples of seafloor sediment at 90-700 m water depth (outer shelf to mid-abyssal), east of New Zealand. One hundred and thirty-nine of the 465 recorded species of benthic foraminifera are new records for the New Zealand region. Characters of the foraminiferal faunas which appear to provide the most useful information for estimating paleobathymetry are, in decreasing order of reliability: relative abundance of common benthic species; benthic species associations; upper depth limits of key benthic species; and relative abundance of planktic foraminifera. R mode cluster analysis on the quantitative census data of the 58 most abundant species of benthic foraminifera produced six species associations within three higher level clusters: (1) calcareous species most abundant at mid-bathyal to outer shelf depths (<1000 m); (2) calcareous species most abundant at mid-bathyal and greater depths (>600 m); (3) agglutinated species mostly occurring at deep abyssal depths (>3000 m). A detrended correspondence analysis ordination plot exhibits a strong relationship between these species associations and bathymetry. This is manifest in the bathymetric ranges of the relative abundance peaks of many of the common benthic species (e.g., Abditodentrix pseudothalmanni 500-2800 m, Bolivina robusta 200-650 m, Bulimina marginata f. marginata 20-600 m, B. marginata f. aculeata 400-3000 m, Cassidulina norvangi 1000-4500 m, Epistominella exigua 1000-4700 m, and Trifarina angulosa 10-650 m), which should prove useful in paleobathymetric estimates. The upper depth limits of 28 benthic foraminiferal species (e.g., Fursenkoina complanata 200 m, Bulimina truncana 450 m, Melonis affinis 550 m, Eggerella bradyi 750 m, and Cassidulina norvangi 1000 m) have potential to improve the precision of paleobathymetric estimates based initially on the total faunal composition. The planktic percentage of foraminiferal tests increases from outer shelf to upper abyssal depths followed by a rapid decline within the foraminiferal lysocline (below c. 3600 m). A planktic percentage <50% is suggestive of shelf depths, and >50% is suggestive of bathyal or abyssal depths above the CCD. In the abyssal zone there is dramatic taphonomic loss of most agglutinated tests (except some textulariids) at burial depths of 0.1-0.2 m, which negates the potential usefulness of these taxa in paleobathymetric assessments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bounty Trough, east of New Zealand, lies along the southeastern edge of the present-day Subtropical Front (STF), and is a major conduit via the Bounty Channel, for terrigenous sediment supply from the uplifted Southern Alps to the abyssal Bounty Fan. Census data on 65 benthic foraminiferal faunas (>63 µm) from upper bathyal (ODP 1119), lower bathyal (DSDP 594) and abyssal (ODP 1122) sequences, test and refine existing models for the paleoceanographic and sedimentary history of the trough through the last 150 ka (marine isotope stages, MIS 6-1). Cluster analysis allows recognition of six species groups, whose distribution patterns coincide with bathymetry, the climate cycles and displaced turbidite beds. Detrended canonical correspondence analysis and comparisons with modern faunal patterns suggest that the groups are most strongly influenced by food supply (organic carbon flux), and to a lesser extent by bottom water oxygen and factors relating to sediment type. Major faunal changes at upper bathyal depths (1119) probably resulted from cycles of counter-intuitive seaward-landward migrations of the Southland Front (SF) (north-south sector of the STF). Benthic foraminiferal changes suggest that lower nutrient, cool Subantarctic Surface Water (SAW) was overhead in warm intervals, and higher nutrient-bearing, warm neritic Subtropical Surface Water (STW) was overhead in cold intervals. At lower bathyal depths (594), foraminiferal changes indicate increased glacial productivity and lowered bottom oxygen, attributed to increased upwelling and inflow of cold, nutrient-rich, Antarctic Intermediate Water (AAIW) and shallowing of the oxygen-minimum zone (upper Circum Polar Deep Water, CPDW). The observed cyclical benthic foraminiferal changes are not a result of associations migrating up and down the slope, as glacial faunas (dominated by Globocassidulina canalisuturata and Eilohedra levicula at upper and lower bathyal depths, respectively) are markedly different from those currently living in the Bounty Trough. On the abyssal Bounty Fan (1122), faunal changes correlate most strongly with grain size, and are attributed to varying amounts of mixing of displaced and in-situ faunas. Most of the displaced foraminifera in turbiditic sand beds are sourced from mid-outer shelf depths at the head of the Bounty Channel. Turbidity currents were more prevalent during, but not restricted to, glacial intervals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The late Quaternary sequence off eastern South Island, New Zealand, consists of ~100 m of alternating bluish gray pelagic oozes and greenish gray hemipelagic oozes that extend uninterruptedly back to the Brunhes/Matuyama boundary (0.73 m.y.). A very high resolution (~2400 yr.) record of sediment texture, calcium carbonate content, and planktonic and benthic foraminiferal oxygen and carbon isotope composition demonstrates an in-phase cyclical fluctuation between the sedimentary parameters that closely correspond to the pelagic-hemipelagic sedimentation cycles and the isotope composition. Pelagic oozes, formed during interglacial periods of high eustatic sea level, are characterized by calcareous microfossils, relative enrichment in sand and clay sizes, high carbonate contents, reduced delta18O values, and increased delta13C values. Hemipelagic oozes, associated with glacial episodes and lowered eustatic sea level, include common terrigenous material and siliceous microfossils, are enriched in silt sizes, have low carbonate contents, high delta18O values, and low delta13C values. The history of alpine glaciations and associated erosion of the South Island of New Zealand, as expressed by the appearance of hemipelagic oozes, can be correlated directly with the major fluctuations of Northern Hemisphere ice sheets as expressed by the influence of eustatic sea-level changes on the oxygen isotope composition of both planktonic and benthic foraminifers. This high-accumulation-rate record contains conspicuous intervals of highfrequency, high-amplitude isotope variability including the presence of multiple glacial/interglacial intervals within single isotope stages, and offers one of the best sections cored to date for detailed study of the evolution and history of climate change over the last 0.75 m.y.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-resolution history of paleoceanographic changes in the subpolar waters of the southern margin of the Subtropical Convergence Zone during the last 130 kyr, is present in foraminiferal assemblages of DSDP Site 594. The foraminifera indicate that sea-surface temperatures during the Last Interglacial Climax were warmer than today, and that between substage 5d through to the end of isotope stage 2, temperatures were mostly cooler than Holocene temperatures. The paleotemperatures suggest that (1) the Subtropical Convergence was located over the site during substage 5e, later moving further north, then moving southwards to near the site during the Holocene, and (2) the Polar Front was positioned over the Site during glacial stages 6, 4, 2 and possibly parts of stage 3. Several major events are indicated by the nannofloral assemblages during these large changes in sea-surface temperature and associated reorganization of ocean circulation. First, the time-progressive trends between E. huxleyi and medium to large Gephyrocupsa are unique to this site, with E. huxleyi dominating over medium Gephyrocupsa during stages 5c-a, middle part of stage 4 and after the middle point of stage 3. This unusual trend may (at least partly) be caused by the shift of the Polar Front across the site. Second, upwelling flora (E. huxleyi and small placoliths) increase in abundance during stages 1, 3 and 5, suggesting that upwelling or disturbance of water stratification took place during the interglacials. Thirdly, there are no significant differences between the distribution patterns of the various morphotypes of medium to large Gephyrocupsu, and the combined value of all medium Gephyrocupsu increases in abundance during glacials (stages 2 and 4 and the end of stage 6), similar to the abundance trends in benthic foraminifera. Finally, subordinate nannofossil taxa also show distinctive climatic trends during the last glacial cycle: (1) Syrucosphaera spp. are present in increased abundance during warmer extremes in climate (substages 5e, 5a, and stage 1); (2) Coccolithus pelagicus and Culcidiscus leptoporus dominate the subordinate nannofossil taxa, and their relative proportions seem to provide a useful paleoceanographic index, with C. pelagicus dominating when the Polar Front Zone is over the site (stages 6, 4 and 2), whilst C. leptoporus is relatively more abundant when the STC is positioned over the site (stages 1 and 5e). Increased abundance of C. pelagicus also can indicate intensified coastal upwelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rising anthropogenic CO2 in the surface ocean has raised serious concerns for the ability of calcifying organisms to secrete their shells and skeletons. Previous mollusc carbonate perturbation experiments report deleterious effects at lowered pH (7.8-7.4 pH units), including reduced shell length and thickness and deformed shell morphology. It is not clear whether the reduced shell growth results from a decrease in calcification rate due to lowered aragonite saturation or from an indirect effect on mollusc metabolism. We take a novel approach to discerning between these two processes by examining the impact of lowered pH on the 'vital-effect' associated with element ratios. Reported herein are the first element ratio (Sr/Ca, Ba/Ca, B/Ca, Mg/Ca and Mn/Ca) profiles throughout the larval life stage of Mytilus edulis. Element ratio data for individuals reared in ambient conditions provide new insights into biomineralization during larval development. Sr/Ca ratios are consistent with Sr incorporation in the mineral phase. Mg and Mn are likely hosted in an organic phase. The Ba partition coefficient of early larval shells is one of the highest reported in biogenic aragonite. The reason for the high Ba concentrations is unknown, but may reflect the assimilation of Ba from food and/or Ba concentration in an organic or amorphous carbonate phase. There is no observable difference in the way the studied elements are incorporated into the shells of individuals reared in ambient and lowered pH conditions. The reduced growth rate at lower pH may be a consequence of a disruption to the larval mollusc metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of ocean acidification on Emiliania huxleyi strain RCC 1216 (calcifying, diploid life-cycle stage) and RCC 1217 (non-calcifying, haploid life-cycle stage) were investigated by measuring growth, elemental composition, and production rates under different pCO2 levels (380 and 950 µatm). In these differently acclimated cells, the photosynthetic carbon source was assessed by a (14)C disequilibrium assay, conducted over a range of ecologically relevant pH values (7.9-8.7). In agreement with previous studies, we observed decreased calcification and stimulated biomass production in diploid cells under high pCO2, but no CO2-dependent changes in biomass production for haploid cells. In both life-cycle stages, the relative contributions of CO2 and HCO3 (-) uptake depended strongly on the assay pH. At pH values =< 8.1, cells preferentially used CO2 (>= 90 % CO2), whereas at pH values >= 8.3, cells progressively increased the fraction of HCO3 (-) uptake (~45 % CO2 at pH 8.7 in diploid cells; ~55 % CO2 at pH 8.5 in haploid cells). In contrast to the short-term effect of the assay pH, the pCO2 acclimation history had no significant effect on the carbon uptake behavior. A numerical sensitivity study confirmed that the pH-modification in the (14)C disequilibrium method yields reliable results, provided that model parameters (e.g., pH, temperature) are kept within typical measurement uncertainties. Our results demonstrate a high plasticity of E. huxleyi to rapidly adjust carbon acquisition to the external carbon supply and/or pH, and provide an explanation for the paradoxical observation of high CO2 sensitivity despite the apparently high HCO3 (-) usage seen in previous studies.