8 resultados para New products

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial and temporal dynamics of seagrasses have been well studied at the leaf to patch scales, however, the link to large spatial extent landscape and population dynamics is still unresolved in seagrass ecology. Traditional remote sensing approaches have lacked the temporal resolution and consistency to appropriately address this issue. This study uses two high temporal resolution time-series of thematic seagrass cover maps to examine the spatial and temporal dynamics of seagrass at both an inter- and intra-annual time scales, one of the first globally to do so at this scale. Previous work by the authors developed an object-based approach to map seagrass cover level distribution from a long term archive of Landsat TM and ETM+ images on the Eastern Banks (~200 km**2), Moreton Bay, Australia. In this work a range of trend and time-series analysis methods are demonstrated for a time-series of 23 annual maps from 1988 to 2010 and a time-series of 16 monthly maps during 2008-2010. Significant new insight was presented regarding the inter- and intra-annual dynamics of seagrass persistence over time, seagrass cover level variability, seagrass cover level trajectory, and change in area of seagrass and cover levels over time. Overall we found that there was no significant decline in total seagrass area on the Eastern Banks, but there was a significant decline in seagrass cover level condition. A case study of two smaller communities within the Eastern Banks that experienced a decline in both overall seagrass area and condition are examined in detail, highlighting possible differences in environmental and process drivers. We demonstrate how trend and time-series analysis enabled seagrass distribution to be appropriately assessed in context of its spatial and temporal history and provides the ability to not only quantify change, but also describe the type of change. We also demonstrate the potential use of time-series analysis products to investigate seagrass growth and decline as well as the processes that drive it. This study demonstrates clear benefits over traditional seagrass mapping and monitoring approaches, and provides a proof of concept for the use of trend and time-series analysis of remotely sensed seagrass products to benefit current endeavours in seagrass ecology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New data on phosphorites of Atlantic seamounts are presented and used in combination with published data to analyze sources of phosphorus in them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pore water and turnover rates were determined for surface sediment cores obtained in 2009 and 2010. The pore water was extracted with Rhizons (Rhizon CSS: length 5 cm, pore diameter 0.15 µm; Rhizosphere Research Products, Wageningen, Netherlands) in 1 cm-resolution and immediately fixed in 5% zinc acetate (ZnAc) solution for sulfate, and sulfide analyses. The samples were diluted, filtered and the concentrations measured with non-suppressed anion exchange chromatography (Waters IC-Pak anion exchange column, waters 430 conductivity detector). The total sulfide concentrations (H2S + HS- + S**2-) were determined using the diamine complexation method (doi:10.4319/lo.1969.14.3.0454). Samples for dissolved inorganic carbon (DIC) and alkalinity measurements were preserved by adding 2 µl saturated mercury chloride (HgCl2) solution and stored headspace-free in gas-tight glass vials. DIC and alkalinity were measured using the flow injection method (detector VWR scientific model 1054) (doi:10.4319/lo.1992.37.5.1113). Dissolved sulfide was eliminated prior to the DIC measurement by adding 0.5 M molybdate solution (doi:10.4319/lo.1995.40.5.1011). Nutrient subsamples (10 - 15 ml) were stored at - 20 °C prior to concentration measurements with a Skalar Continuous-Flow Analyzer (doi:10.1002/9783527613984).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pore water and turnover rates were determined for surface sediment cores obtained in 2009 and 2010. The pore water was extracted with Rhizons (Rhizon CSS: length 5 cm, pore diameter 0.15 µm; Rhizosphere Research Products, Wageningen, Netherlands) in 1 cm-resolution and immediately fixed in 5% zinc acetate (ZnAc) solution for sulfate, and sulfide analyses. The samples were diluted, filtered and the concentrations measured with non-suppressed anion exchange chromatography (Waters IC-Pak anion exchange column, waters 430 conductivity detector). The total sulfide concentrations (H2S + HS- + S**2-) were determined using the diamine complexation method (doi:10.4319/lo.1969.14.3.0454). Samples for dissolved inorganic carbon (DIC) and alkalinity measurements were preserved by adding 2 µl saturated mercury chloride (HgCl2) solution and stored headspace-free in gas-tight glass vials. DIC and alkalinity were measured using the flow injection method (detector VWR scientific model 1054) (doi:10.4319/lo.1992.37.5.1113). Dissolved sulfide was eliminated prior to the DIC measurement by adding 0.5 M molybdate solution (doi:10.4319/lo.1995.40.5.1011). Nutrient subsamples (10 - 15 ml) were stored at - 20 °C prior to concentration measurements with a Skalar Continuous-Flow Analyzer (doi:10.1002/9783527613984).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pore water and turnover rates were determined for surface sediment cores obtained in 2009 and 2010. The pore water was extracted with Rhizons (Rhizon CSS: length 5 cm, pore diameter 0.15 µm; Rhizosphere Research Products, Wageningen, Netherlands) in 1 cm-resolution and immediately fixed in 5% zinc acetate (ZnAc) solution for sulfate, and sulfide analyses. The samples were diluted, filtered and the concentrations measured with non-suppressed anion exchange chromatography (Waters IC-Pak anion exchange column, waters 430 conductivity detector). The total sulfide concentrations (H2S + HS- + S**2-) were determined using the diamine complexation method (doi:10.4319/lo.1969.14.3.0454). Samples for dissolved inorganic carbon (DIC) and alkalinity measurements were preserved by adding 2 µl saturated mercury chloride (HgCl2) solution and stored headspace-free in gas-tight glass vials. DIC and alkalinity were measured using the flow injection method (detector VWR scientific model 1054) (doi:10.4319/lo.1992.37.5.1113). Dissolved sulfide was eliminated prior to the DIC measurement by adding 0.5 M molybdate solution (doi:10.4319/lo.1995.40.5.1011). Nutrient subsamples (10 - 15 ml) were stored at - 20 °C prior to concentration measurements with a Skalar Continuous-Flow Analyzer (doi:10.1002/9783527613984).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The DTRF2014 is a realization of the the fundamental Earth-fixed coordinate system, the International Terrestrial Reference System (ITRS). It has been computed by the Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM). The DTRF2014 consists of station positions and velocities of 1712 globally distributed geodetic observing stations of the observation techniques VLBI, SLR, GNSS and DORIS. Additionally, for the first time, non-tidal atmospheric and hydrological loading is considered in the solution. The DTRF2014 was released in August 2016 and incorporates observation data of the four techniques up 2014. The observation data were processed and submitted by the corresponding technique services: IGS (International GNSS Service, http://igscb.jpl.nasa.gov) IVS (International VLBI Service, http://ivscc.gsfc.nasa.gov) ILRS (International Laser Ranging Service, http://ilrs.gsfc.nasa.gov) IDS (International DORIS Service, http://ids-doris.org). The DTRF2014 is an independent ITRS realization. It is computed on the basis of the same input data as the realizations JTRF2014 (JPL, Pasadena) and ITRF2014 (IGN, Paris). The three realizations of the ITRS differ conceptually. While DTRF2014 and ITRF2014 are based on station positions at a reference epoch and velocities, the JTRF2014 is based on time series of station positions. DTRF2014 and ITRF2014 result from different combination strategies: The ITRF2014 is based on the combination of solutions, the DTRF2014 is computed by the combination of normal equations. The DTRF2014 comprises 3D coordinates and coordinate changes of 1347 GNSS-, 113 VLBI-, 99 SLR- and 153 DORIS-stations. The reference epoch is 1.1.2005, 0h UTC. The Earth Orientation Parameters (EOP) - that means the coordinates of the terrestrial and the celestial pole, UT1-UTC and the Length of Day (LOD) - were simultaneously estimated with the station coordinates. The EOP time series cover the period from 1979.7 to 2015.0. The station names are the official IERS identifiers: CDP numbers or 4-character IDs and DOMES numbers (http://itrf.ensg.ign.fr/doc_ITRF/iers_sta_list.txt). The DTRF2014 solution is available in one comprehensive SINEX file and four technique-specific SINEX files, see below. A detailed description of the solution is given on the website of DGFI-TUM (http://www.dgfi.tum.de/en/science-data-products/dtrf2014/). More information can be made available by request.