8 resultados para Neutral framing

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tissue-specific composition of sum classes of brominated and chlorinated contaminants and metabolic/degradation byproducts was determined in adult male and female polar bears from East Greenland. Significantly (p < 0.05) higher concentrations of SUM-PCBs, various other organochlorines such as SUM-CHL, p,p'-DDE, SUM-CBz, SUM-HCHs, octachlorostyrene (OCS),SUM-mirex, dieldrin, the flame retardants SUM-PBDEs, and total-(R)-hexabromocyclododecane (HBCD), SUM-methylsulfonyl (MeSO2)-PCBs and 3-MeSO2-p,p'-DDE, were found in the adipose and liver tissues relative to whole blood and brain. In contrast, SUM-hydroxyl (OH)-PCB, 4-OH-heptachlorostyrene and SUM-OH-PBDE concentrations were significantly highest (p < 0.05) in whole blood, whereas the highest concentrations of SUM-OH-PBBs were found in the adipose tissue. Based on the total concentrations of all organohalogens in all three tissues and blood, the combined body burden was estimated to be 1.34 ± 0.12 g, where >91% of this amount was accounted for by the adipose tissue alone, followed by the liver, whole blood, and brain. These results show that factors such as protein association and lipid solubility appear to be differentially influencing the toxicokinetics, in terms of tissue composition/localization and burden, of organohalogen classes with respect to chemical structure and properties such as the type of halogenation (e.g., chlorination or bromination), and the presence or absence of additional phenyl group substituents (e.g., MeO and OH groups). The tissue- and blood-specific accumulation (or retention) among organohalogen classes indicates that exposure and any potential contaminant-mediated effects in these polar bears are likely tissue or blood specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of studying isotopic composition of helium in underground fluids of the Baikal-Mongolian region during the last quarter of XX century are summarized. Determinations of 3He/4He ratio in 139 samples of gas phase from fluids, collected at 104 points of the Baikal rift zone and adjacent structures are given. 3He/4He values lie within the range from 1x10**-8 (typical for crustal radiogenic helium) to 1.1x10**-5 (close to typical MORB reservoir). Repeated sampling in some points during more than 20 years showed stability of helium isotopic composition in time in each of them at any level of 3He/4He values. There is no systematic differences of 3He/4He in samples from surface water sources and deeper intervals of boreholes in the same areas. Universal relationship between isotopic composition of helium and general composition of gas phase is absent either, but the minimum 3He/4He values occurred in methane gas of hydrocarbon deposits, whereas in nitrogen and carbon dioxide gases of helium composition varied (in the latter maximum 3He/4He values have been measured). According to N2/Ar_atm ratio nitrogen gases are atmospheric. In carbonic gas fN2/fNe ratio indicates presence of excessive (non-atmogenic) nitrogen, but the attitude CO2/3He differs from one in MORB. Comparison of helium isotopic composition with its concentration and composition of the main components of gas phase from fluids shows that it is formed under influence of fractionation of components with different solubility in the gas-water system and generation/consumption of reactive gases in the crust. Structural and tectonic elements of the region differ from the spectrum of 3He/4He values. At the pre-Riphean Siberian Platform the mean 3He/4He = (3.6+/-0.9)x10**- 8 is very close to radiogenic one. In the Paleozoic crust of Khangay 3He/4He = (16.3+/-4.6)x10**-8, and the most probable estimate is (12.3+/-2.9)x10**-8. In structures of the eastern flank of the Baikal rift zone (Khentei, Dauria) affected by the Mz-Kz activization 3He/4He values range from 4.4x10**-8 to 2.14x10**-6 (average 0.94x10**-6). Distribution of 3He/4He values across the strike of the Baikal rift zone indicates advective heat transfer from the mantle not only in the rift zone, but also much further to the east. In fluids of the Baikal rift zone range of 3He/4He values is the widest: from 4x10**-8 to 1.1x10**-5. Their variations along the strike of the rift zone are clearly patterned, namely, decrease of 3He/4He values in both directions from the Tunka depression. Accompanied by decrease in density of conductive heat flow and in size of rift basins, this trend indicates decrease in intensity of advective heat transfer from the mantle to peripheral segments of the rift zone. Comparing this trend with data on other continental rift zones and mid-ocean ridges leads to the conclusion about fundamental differences in mechanisms of interaction between the crust and the mantle in these environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the comparative bioaccumulation, biotransformation and/or biomagnification from East Greenland ringed seal (Pusa hispida) blubber to polar bear (Ursus maritimus) tissues (adipose, liver and brain) of various classes and congeners of persistent chlorinated and brominated contaminants and metabolic by-products: polychlorinated biphenyls (PCBs), chlordanes (CHLs), hydroxyl (OH-) and methylsulfonyl (MeSO2-) PCBs, polybrominated biphenyls (PBBs), OH-PBBs, polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCD) flame retardants and OH- and methoxyl (MeO-) PBDEs, 2,2-dichloro-bis(4-chlorophenyl)ethene (p,p'-DDE), 3-MeSO2-p,p'-DDE, pentachlorophenol (PCP) and 4-OH-heptachlorostyrene (4-OH-HpCS). We detected all of the investigated contaminants in ringed seal blubber with high frequency, the main diet of East Greenland bears, with the exception of OH-PCBs and 4-OH-HpCS, which indicated that these phenolic contaminants were likely of metabolic origin and formed in the bears from accumulated PCBs and octachlorostyrene (OCS), respectively, rather than being bioaccumulated from a seal blubber diet. For all of the detectable sum of classes or individual organohalogens, in general, the ringed seal to polar bear mean BMFs for SumPCBs, p,p'-DDE, SumCHLs, SumMeSO2-PCBs, 3-MeSO2-p,p'-DDE, PCP, SumPBDEs, total-(alpha)-HBCD, SumOH-PBDEs, SumMeO-PBDEs and SumOH-PBBs indicated that these organohalogens bioaccumulate, and in some cases there was tissue-specific biomagnification, e.g., BMFs for bear adipose and liver ranged from 2 to 570. The blood-brain barrier appeared to be effective in minimizing brain accumulation as BMFs were <= 1 in the brain, with the exception of SumOH-PBBs (mean BMF = 93±54). Unlike OH-PCB metabolites, OH-PBDEs in the bear tissues appeared to be mainly accumulated from the seal blubber rather than being metabolic formed from PBDEs in the bears. In vitro PBDE depletion assays using polar bear hepatic microsomes, wherein the rate of oxidative metabolism of PBDE congeners was very slow, supported the probability that accumulation from seals is the main source of OH-PBDEs in the bear tissues. Our findings demonstrated from ringed seal to polar bears that organohalogen biotransformation, bioaccumulation and/or biomagnification varied widely and depended on the contaminant in question. Our results show the increasing complexity of bioaccumulated and in some cases biomagnified, chlorinated and brominated contaminants and/or metabolites from the diet may be a contributing stress factor in the health of East Greenland polar bears.