2 resultados para Negative control
em Publishing Network for Geoscientific
Resumo:
Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes was used to investigate the phylogenetic composition of bacterioplankton communities in several freshwater and marine samples. An average of about 50% of the cells were detected by probes for the domains Bacteria and Archaea. Cells were concentrated from water samples (1 to 100 ml) on white polycarbonate filters (diameter, 47 mm; pore size, 0.2 mm; type GTTP 4700 [Millipore, Eschborn, Germany]) by applying a vacuum of <25 kPa. They were subsequently fixed by covering the filter with 3 ml of a freshly prepared, phosphate-buffered saline (pH 7.2)-4% paraformaldehyde (Sigma, Deisenhofen, Germany) solution for 30 min at room temperature. Airdried filters are ready for hybridization and can be stored at 220°C or room temperature for several months without showing apparent changes. Probes BET42a, GAM42a, and PLA886 were used with competitor oligonucleotides as described previously amongst others in Manz et al., (1992; doi:10.1016/S0723-2020(11)80121-9). The filters were transferred to a vial containing 50 ml of prewarmed (48°C) washing solution (70 mM NaCl, 20 mM Tris-HCl [pH 7.4], 5 mM EDTA, 0.01% sodium dodecyl sulfate) and incubated freely floating without shaking at 48°C for 15 min. The filter sections were dried on Whatman 3M paper (Whatman Ltd., Maidstone, United Kingdom) and covered with 50 ml of DAPI solution (1 mg/ml in distilled water filtered through at 0.2-mm filter) for 5 min at room temperature in the dark. For each sample and probe, more than 500 cells were enumerated; for the DAPI examination, more than 1,500 cells were counted per sample. All probe-specific cell counts are presented as the percentage of cells visualized by DAPI. The mean abundances and standard deviations were calculated from the counts of 10 to 20 randomly chosen fields on each filter section. All counts were corrected by subtracting the counts obtained with the negative control NON338. Mean and standard deviation were calculated from the counts of 10 to 20 randomly chosen fields on each filter section.
Resumo:
Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (2-10 °C for 2-14 days), but returning to cold winter climate exposes the ecosystem to lower temperatures by the loss of insulating snow. Soil animals, which play an integral part in soil processes, may be very susceptible to such events depending on the intensity of soil warming and low temperatures following these events. We simulated week-long extreme winter warming events - using infrared heating lamps, alone or with soil warming cables - for two consecutive years in a sub-Arctic dwarf shrub heathland. Minimum temperatures were lower and freeze-thaw cycles were 2-11 times more frequent in treatment plots compared with control plots. Following the second event, Acari populations decreased by 39%; primarily driven by declines of Prostigmata (69%) and the Mesostigmatic nymphs (74%). A community-weighted vertical stratification shift occurred from smaller soil dwelling (eu-edaphic) Collembola species dominance to larger litter dwelling (hemi-edaphic) species dominance in the canopy-with-soil warming plots compared with controls. The most susceptible groups to these winter warming events were the smallest individuals (Prostigmata and eu-edaphic Collembola). This was not apparent from abundance data at the Collembola taxon level, indicating that life forms and species traits play a major role in community assembly following extreme events. The observed shift in soil community can cascade down to the micro-flora affecting plant productivity and mineralization rates. Short-term extreme weather events have the potential to shift community composition through trait composition with potentially large consequences for ecosystem development.