8 resultados para Negative Binomial model
em Publishing Network for Geoscientific
Resumo:
This paper assesses the impact of climate change on China's agricultural production at a cross-provincial level using the Ricardian approach, incorporating a multilevel model with farm-level group data. The farm-level group data includes 13379 farm households, across 316 villages, distributed in 31 provinces. The empirical results show that, firstly, the marginal effects and elasticities of net crop revenue per hectare with respect to climate factors indicated that the annual impact of temperature on net crop revenue per hectare was positive, and the effect of increased precipitation was negative when looking at the national totals; secondly, the total impact of simulated climate change scenarios on net crop revenues per hectare at a Chinese national total level, was an increase of between 79 USD per hectare and 207 USD per hectare for the 2050s, and an increase from 140 USD per hectare to 355 USD per hectare for the 2080s. As a result, climate change may create a potential advantage for the development of Chinese agriculture, rather than a risk, especially for agriculture in the provinces of the Northeast, Northwest and North regions. However, the increased precipitation can lead to a loss of net crop revenue per hectare, especially for the provinces of the Southwest, Northwest, North and Northeast regions.
Resumo:
The paper presents data on the Nd-Sr systematics of magmatic rocks of the Khaidaiskii Series of the Anginskaya Formation in the Ol'khon region, western Baikal area, and rocks of the Talanchanskaya Formation on the eastern shore of Lake Baikal. Geochemical characteristics of these rocks are identical and testify to their arc provenance. At the same time, the epsilon(t)Nd of rocks of the Khaidaiskii Series in the Ol'khon area has positive values, and the data points of these rocks plot near the mantle succession line in the epsilon(t)Nd-87Sr/86Sr diagram, whereas the epsilon(t)Nd values of rocks of the Talanchanskaya Formation are negative, and the data points of these rocks fall into the fourth quadrant in the epsilon(t)Nd -87Sr/86Sr diagram. This testifies to a mantle genesis of the parental magmas of the Khaidaiskii Series and to the significant involvement of older crustal material in the generation of the melts that produced the orthorocks on the eastern shore of the lake. These conclusions are corroborated by model ages of magmatic rocks in the Ol'khon area (close to 1 Ga) and of rocks of the Talanchanskaya Formation (approximately 2 Ga). The comparison of our data with those obtained by other researchers on the Nd-Sr isotopic age of granulites of the Ol'khon Group and metavolcanics in various structural zones in the northern Baikal area suggests, with regard for the geochemistry of these rocks, the accretion of tectonic nappes that had different isotopic histories: some of them were derived from the mantle wedge and localized in the island arc itself (magmatic rocks of the Anginskaya Formation) or backarc spreading zone (mafic metamagmatic rocks of the Ol'khon Group), while others were partial melts derived, with the participation of crustal material, from sources of various age (metagraywackes in the backarc basin in the Ol'khon Group and the ensialic basement of the island arc in the Talanchanskaya Formation).
Resumo:
Based on benthic foraminiferal delta18O from ODP Site 1143, a 5-Myr astronomical timescale for the West Pacific Plio-Pleistocene was established using an automatic orbital tuning method. The tuned Brunhes/Matuyama paleomagnetic polarity reversal age agrees well with the previously published age of 0.78 Ma. The tuned ages for several planktonic foraminifer bio-events also agree well with published dates, and new ages for some other bio-events in the South China Sea were also estimated. The benthic delta18O from Site 1143 is highly coherent with the Earth's orbit (ETP) both at the obliquity and precession bands for the last 5 Myr, and at the eccentricity band for the last 2 Myr. In general, the 41-kyr cycle was dominant through the Plio-Pleistocene although the 23-kyr cycle was also very strong. The 100-kyr cycle became dominant only during the last 1 Myr. A comparison of the benthic delta18O between the Atlantic (ODP 659) and the East and West Pacific (846 and 1143) reveals that the Atlantic-Pacific benthic oxygen isotope difference ratio (Delta delta18OAtl-Pac) displays an increasing trend in three time intervals: 3.6-2.7 Ma, 2.7-2.1 Ma and 1.5-0.25 Ma. Each of the intervals begins with a rapid negative shift in Delta delta18OAtl-Pac, followed by a long period with an increasing trend, corresponding to the growth of the Northern Hemisphere ice sheet. This means that all three intervals of ice sheet growth in the Northern Hemisphere were accompanied at the beginning by a rapid relative warming of deep water in the Atlantic as compared to that of the Pacific, followed by its gradual relative cooling. This general trend, superimposed on the frequent fluctuations with glacial cycles, should yield insights into the processes leading to the boreal glaciation. Cross-spectral analyses of the Delta delta18OAtl-Pac with the Earth's orbit suggests that after the initiation of Northern Hemisphere glaciation at about 2.5 Ma, obliquity rather than precession had become the dominant force controlling the vertical structure or thermohaline circulation in the paleo-ocean.
Resumo:
We analyze the effect of environmental uncertainties on optimal fishery management in a bio-economic fishery model. Unlike most of the literature on resource economics, but in line with ecological models, we allow the different biological processes of survival and recruitment to be affected differently by environmental uncertainties. We show that the overall effect of uncertainty on the optimal size of a fish stock is ambiguous, depending on the prudence of the value function. For the case of a risk-neutral fishery manager, the overall effect depends on the relative magnitude of two opposing effects, the 'convex-cost effect' and the 'gambling effect'. We apply the analysis to the Baltic cod and the North Sea herring fisheries, concluding that for risk neutral agents the net effect of environmental uncertainties on the optimal size of these fish stocks is negative, albeit small in absolute value. Under risk aversion, the effect on optimal stock size is positive for sufficiently high coefficients of constant relative risk aversion.
Resumo:
Early Paleogene warm climates may have been linked to different modes and sources of deepwater formation. Warm polar temperatures of the Paleocene and Eocene may have resulted from either increased atmospheric trace gases or increased heat transport through deep and intermediate waters. The possibility of increasing ocean heat transport through the production of warm saline deep waters (WSDW) in the Tethyan region has generated considerable interest. In addition, General Circulation Model results indicate that deepwater source regions may be highly sensitive to changing basin configurations. To decipher deepwater changes, we examined detailed benthic foraminiferal faunal and isotopic records of the late Paleocene through the early Eocene (~60 to 50 Ma) from two critical regions: the North Atlantic (Bay of Biscay Site 401) and the Pacific (Shatsky Rise Site 577). These records are compared with published data from the Southern Ocean (Maud Rise Site 690, Islas Orcadas Rise Site 702). During the late Paleocene, similar benthic foraminiferal delta18O values were recorded at all four sites. This indicates uniform deepwater temperatures, consistent with a single source of deep water. The highest delta13C values were recorded in the Southern Ocean and were 0.5 per mil more positive than those of the Pacific. We infer that the Southern Ocean was proximal to a source of nutrient-depleted deep water during the late Paleocene. Upper Paleocene Reflector Ab was cut on the western Bermuda Rise by cyclonically circulating bottom water, also suggesting a vigorous source of bottom water in the Southern Ocean. A dramatic negative excursion in both carbon and oxygen isotopes occurred in the latest Paleocene in the Southern Ocean. This is a short-term (<100 kyr), globally synchronous event which also is apparent in both the Atlantic and Pacific records as a carbon isotopic excursion of approximately 1 per mil. Faunal analyses from the North Atlantic and Pacific sites indicate that the largest benthic foraminiferal faunal turnover of the Cenozoic was synchronous with the isotopic excursion, lending support to the hypothesis that the extinctions were caused by a change in deepwater circulation. We speculate that the Southern Ocean deepwater source was reduced or eliminated at the time of the excursion. During the early Eocene, Southern Ocean delta13C values remained enriched relative to the North Atlantic and Pacific. However, the Southern Ocean was also enriched in delta18O relative to these basins. We interpret that these patterns indicate that although the Southern Ocean was proximal to a source of cool, nutrient-depleted water, the intermediate to upper deep water sites of the North Atlantic and Pacific were ventilated by a different source that probably originated in low latitudes, i.e., WSDW.
Resumo:
The marine nitrogen (N) inventory is thought to be stabilized by negative feedback mechanisms that reduce N inventory excursions relative to the more slowly overturning phosphorus inventory. Using a global biogeochemical ocean circulation model we show that negative feedbacks stabilizing the N inventory cannot persist if a close spatial association of N2 fixation and denitrification occurs. In our idealized model experiments, nitrogen deficient waters, generated by denitrification, stimulate local N2 fixation activity. But, because of stoichiometric constraints, the denitrification of newly fixed nitrogen leads to a net loss of N. This can enhance the N deficit, thereby triggering additional fixation in a vicious cycle, ultimately leading to a runaway N loss. To break this vicious cycle, and allow for stabilizing negative feedbacks to occur, inputs of new N need to be spatially decoupled from denitrification. Our idealized model experiments suggest that factors such as iron limitation or dissolved organic matter cycling can promote such decoupling and allow for negative feedbacks that stabilize the N inventory. Conversely, close spatial co-location of N2 fixation and denitrification could lead to net N loss.
Resumo:
Stable oxygen isotope data from four holes drilled at the Ocean Drilling Program Site 967, which is located on the lower northern slope of the Eratosthenes Seamount, provide a continuous record of Eastern Mediterranean surface-water conditions during the last 3.2 Ma. A high-resolution stratigraphy for the Pliocene-Pleistocene sequence was established by using a combination of astronomical calibration of sedimentary cycles, nannofossil stratigraphy, and stable oxygen isotope fluctuations. Sapropels and color cycles are present throughout the last 3.2 Ma at Site 967, and their ages, as determined by calibration against the precessional component of the astronomical record, are consistent with those estimated for the sapropels of the classical land-based marine sequences of the Punta Piccola, San Nicola, Singa, and Vrica sections (southern Italy). The Site 967 oxygen isotope record shows large amplitude fluctuations mainly caused by variations in surface water salinity throughout the entire period. Spectral analysis shows that fluctuations in the d18O record were predominantly influenced by orbital obliquity and precessional forcing from 3.2 to 1 Ma, and all main orbital frequencies characterize the d18O record for the last million years. The start of sapropel formation at 3.2 Ma indicates a possible link between sapropel formation and the build up of northern hemisphere ice sheets. The dominance of the obliquity cycle in the interval from 3.2-1 Ma further points to the sensitivity of Eastern Mediterranean climate to the fluctuations in the volume of Arctic ice sheets. An intensification of negative isotope anomalies at Site 967, relative to the open ocean, supports a link between high run-off (during warm periods) and sapropel formation. freshwater input would have inhibited deep-water formation, which led to stagnation of deeper waters. Comparison with the land sections also confirms that differential preservation and diagenesis play a key role in sapropel occurrence.
Resumo:
The development of a permanent, stable ice sheet in East Antarctica happened during the middle Miocene, about 14 million years (Myr) ago. The middle Miocene therefore represents one of the distinct phases of rapid change in the transition from the "greenhouse" of the early Eocene to the "icehouse" of the present day. Carbonate carbon isotope records of the period immediately following the main stage of ice sheet development reveal a major perturbation in the carbon system, represented by the positive d13C excursion known as carbon maximum 6 ("M6"), which has traditionally been interpreted as reflecting increased burial of organic matter and atmospheric pCO2 drawdown. More recently, it has been suggested that the d13C excursion records a negative feedback resulting from the reduction of silicate weathering and an increase in atmospheric pCO2. Here we present high-resolution multi-proxy (alkenone carbon and foraminiferal boron isotope) records of atmospheric carbon dioxide and sea surface temperature across CM6. Similar to previously published records spanning this interval, our records document a world of generally low (~300 ppm) atmospheric pCO2 at a time generally accepted to be much warmer than today. Crucially, they also reveal a pCO2 decrease with associated cooling, which demonstrates that the carbon burial hypothesis for CM6 is feasible and could have acted as a positive feedback on global cooling.