26 resultados para National Science Foundation (U.S.). Division of Science Resources Studies

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the influences of temperature, salinity and pH on the calcium isotope as well as trace and minor element (uranium, strontium, magnesium) to Ca ratios on calcium carbonate cysts of the calcareous dinoflagellate species Thoracosphaera heimii grown in laboratory cultures. The natural habitat of this species is the photic zone (preferentially at the chlorophyll maximum depth) of temperate to tropical oceans, and it is abundant in deep-sea sediments over the entire Cenozoic. In our experiments, temperatures ranged from 12 to 30 °C, salinity from 36.5 to 38.8 and pH from 7.9 to 8.4. The delta44/40Ca of T. heimii cysts resembles that of other marine calcifiers, including coccolithophores, foraminifers and corals. However, its temperature sensitivity is considerably smaller and statistically insignificant, and T. heimii might serve as a recorder of changes in seawater delta44/40Ca over geologic time. The Sr/Ca ratios of T. heimii cysts show a pronounced temperature sensitivity (0.016 mmol/mol °C**-1) and have the potential to serve as a palaeo-sea surface temperature proxy. No clear temperature- and pH-dependences were observed for Mg/Ca. U/Ca seems to be influenced by temperature and pH, but the correlations change sign at 23 °C and pH 8.2, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geomagnetic excursions are recognized as intrinsic features of the Earth's magnetic field. High-resolution records of field behaviour, captured in marine sedimentary cores, present an opportunity to determine the temporal and geometric character of the field during geomagnetic excursions and provide constraints on the mechanisms producing field variability. We present here the highest resolution record yet published of the Blake geomagnetic excursion (~125 ka) measured in three cores from Ocean Drilling Program (ODP) Site 1062 on the Blake-Bahama Outer Ridge. The Blake excursion has a controversial structure and timing but these cores have a sufficiently high sedimentation rate (~10cm/ka) to allow detailed reconstruction of the field behaviour at this site during the excursion. Palaeomagnetic measurements of the cores reveal rapid transitions (<500 yr) between the contemporary stable normal polarity and a completely reversed state of long duration which spans a stratigraphic interval of 0.7 m. We determine the duration of the reversed state during the Blake excursion using oxygen isotope stratigraphy, combined with 230Th excess measurements to assess variations in the sedimentation rates through the sections of interest. This provides an age and duration for the Blake excursion with greater accuracy and with constrained uncertainty. We date the directional excursion as falling between 129 and 122 ka with a duration for the deviation of 6.5±1.3 kyr. The long duration of this interval and the fully reversed field suggest the existence of a pseudo-stable, reversed dipole field component during the excursion and challenge the idea that excursions are always of short duration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to understand the driving forces for Pleistocene climate change more fully we need to compare the timing of climate events with their possible forcing. In contrast to the last interglacial (marine isotope stage (MIS) 5) the timing of the penultimate interglacial (MIS 7) is poorly constrained. This study constrains its timing and structure by precise U-Th dating of high-resolution delta18O records from aragonite-rich Bahamian slope sediments of ODP Leg 166 (Sites 1008 and 1009). The major glacial-interglacial cycles in delta18O are distinct within these cores and some MIS 7 substages can be identified. These sediments are well suited for U-Th dating because they have uranium concentrations of up to 12 ppm and very low initial 230Th contributions with most samples showing 230Th/232Th activity ratio of >75. U and Th concentrations and isotope ratios were measured by thermal ionisation mass spectrometry and multiple collector inductively coupled plasma mass spectrometry, with the latter providing dramatically better precision. Twenty-nine of the 41 samples measured have a delta234U value close to modern seawater suggesting that they have experienced little diagenesis. Ages from 27 of the 41 samples were deemed reliable on the basis of both their U and their Th isotope ratios. Ages generally increase with depth, although we see a repeated section of stratigraphy in one core. Extrapolation of constant sedimentation rate through each substage suggests that the peak of MIS 7e lasted from ~237 to 228 ka and that 7c began at 215 ka. This timing is consistent with existing low precision radiometric dates from speleothem deposits. The beginning of both these substages appears to be slightly later than in orbitally tuned timescales. The end of MIS 7 is complex, but also appears to be somewhat later than is suggested by orbitally tuned timescales, although this event is not particularly well defined in these cores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Major and trace element composition as well as Sm-Nd isotopes of whole-rock samples and clay fractions (<2 µm) of bentonite layers and U-Pb ages of detrital zircons from the Paleogene Basilika Formation (Svalbard) and Mount Lawson Formation (Ellesmere Island).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Absolute ages of plutonic rocks from mid-ocean ridges provide important constraints on the scale, timing and rates of oceanic crustal accretion, yet few such rocks have been absolutely dated. We present 206Pb/238U SHRIMP zircon ages from two ODP Drill Holes and a surface sample from Atlantis Bank on the Southwest Indian Ridge. We report ten new sample ages from 26-1430 m in ODP Hole 735B, and one from 57 m in ODP Hole 1105A. Including a previously published age, eleven samples from Hole 735B yield 206Pb/238U zircon crystallization ages that are the same, within error, overlap with the estimated magnetic age and are inferred to date the main period of crustal growth, the average age of analyses is 11.99 ± 0.12 Ma. Any differences in the ages of magmatic series and/or tectonic blocks within Hole 735B are unresolvable and eight well-constrained ages vary from 11.86 ± 0.20 Ma to 12.13 ± 0.21 Ma, a range of 0.27 ± 0.29 Ma, consistent with the duration of crustal accretion observed at the Mid-Atlantic Ridge. An age of 11.87 ± 0.23 Ma from Hole 1105A is within error of ages from Hole 735B and permits previous correlations made between zones of oxide-rich gabbros in each hole. Pb/U zircon ages > 0.5 Ma younger than the magnetic age are recorded in at least three samples from Atlantis Bank, one from Hole 735B and two collected along a fault scarp to the East. These young ages may date one or more off-axis events previously suggested from thermochronologic data and support the interpretation of a complex geological history following crustal accretion at Atlantis Bank. Together with results from the surface of Atlantis Bank, dating has shown that while the majority of Pb/U SHRIMP zircon ages record the short-lived (< 0.5 Ma) phase of crustal accretion on-axis, results from several samples precede and post-date this period by > 1 Ma suggesting a complex and prolonged magmatic/tectonic history for the crust at Atlantis Bank.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The timing of sea-level change provides important constraints on the mechanisms driving Earth's climate between glacial and interglacial states. Fossil corals constrain the timing of past sea level by their suitability for dating and their growth position close to sea level. The coral-derived age for the last deglaciation is consistent with climate change forced by Northern Hemisphere summer insolation (NHI), but the timing of the penultimate deglaciation is more controversial. We found, by means of uranium/thorium dating of fossil corals, that sea level during the penultimate deglaciation had risen to ~85 meters below the present sea level by 137,000 years ago, and that it fluctuated on a millennial time scale during deglaciation. This indicates that the penultimate deglaciation occurred earlier with respect to NHI than the last deglacial, beginning when NHI was at a minimum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regional/global-scale information on coastline rates of change and trends is extremely valuable, but national-scale studies are scarce. A widely accepted standardized methodology for analysing long-term coastline change has been difficult to achieve, but is essential to conduct an integrated and holistic approach to coastline evolution and hence support coastal management actions. Additionally, databases providing knowledge on coastline evolution are of key importance to support both coastal management experts and users. The main objective of this work is to present the first systematic, global and consistent long-term coastline evolution data of Portuguese mainland low-lying sandy. The methodology used quantifies coastline evolution using an unique and robust coastline indicator (the foredune toe), which is independent of short-term changes. The dataset presented comprises: 1) two polyline sets, mapping the 1958 and 2010 sandy beach-dune systems coastline, both optimized for working at 1:50 000 scale or smaller, and 2) one polyline set representing long-term change rates between 1958 and 2010, estimated at each 250 m. Results show beach erosion as the dominant trend, with a mean change rate of -0.24 ± 0.01 m/year for all mainland Portuguese beach-dune systems. Although erosion is dominant, this evolution is variable in signal and magnitude in different coastal sediment cell and also within each cell. The most relevant beach erosion issues were found in the coastal stretches of Espinho - Torreira and Costa Nova - Praia da Mira, both at sub-cell 1b; Cova Gala - Leirosa, at sub-cell 1c and Cova do Vapor - Costa da Caparica, at cell 4. Cells 1 and 4 exhibit a history of major human interventions interfering with the coastal system, many of which originated and maintained a sediment deficit. In contrast, cells 5 and 6 have been less intervened and show stable or moderate accretion behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uranium (U) concentrations and activity ratios (d234U) of authigenic carbonates are sensitive recorders of different fluid compositions at submarine seeps of hydrocarbon-rich fluids ("cold seeps") at Hydrate Ridge, off the coast of Oregon, USA. The low U concentrations (mean: 1.3 ± 0.4 µg/g) and high 234U values (165-317 per mil) of gas hydrate carbonates reflect the influence of sedimentary pore water indicating that these carbonates were formed under reducing conditions below or at the seafloor. Their 230Th/234U ages span a time interval from 0.8 to 6.4 ka and cluster around 1.2 and 4.7 ka. In contrast, chemoherm carbonates precipitate from marine bottom water marked by relatively high U concentrations (mean: 5.2 ± 0.8 µg/g) and a mean d234U ratio of 166 ± 3 per mil. Their U isotopes reflect the d234U ratios of the bottom water being enriched in 234U relative to normal seawater. Simple mass balance calculations based on U concentrations and their corresponding d234U ratios reveal a contribution of about 11% of sedimentary pore water to the bottom water. From the U pore water flux and the reconstructed U pore water concentration a mean flow rate of about 147 ± 68 cm/a can be estimated. 230Th/234U ages of chemoherm carbonates range from 7.3 to 267.6 ka. 230Th/234U ages of two chemoherms (Alvin and SE-Knoll chemoherm) correspond to time intervals of low sealevel stands in marine isotope stages (MIS) 2, 4, 5, 6, 7 and 8. This observation indicates that fluid flow at cold seep sites sensitively reflects pressure changes of the hydraulic head in the sediments. The d18OPDB ratios of the chemoherm carbonates support the hypothesis of precipitation during glacial times. Deviations of the chemoherm d18O values from the marine d18O record can be interpreted as to reflect temporally and spatially varying bottom water and/or vent fluid temperatures during carbonate precipitation between 2.6 and 8.6°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have performed U-Th isotope analyses on pure aragonite samples from the upper sections of Leg 166 cores to assign each aragonite-rich sediment package to the correct sea-level highstand. The uppermost sediment package from each of the four sites investigated (Sites 1003, 1005, 1006, and 1007) yielded a Holocene U-Th age. Sediment packages from deeper in the cores have suffered diagenesis. This diagenesis consists of significant U loss (up to 40%) in the site nearest the platform (Site 1005), slight U gain in sites further from the platform, and continuous loss of pure 234U caused by alpha recoil at all sites. The difference in diagenesis between the sites can be explained by the different fluid-flow histories they have experienced. Site 1005 is sufficiently close to the platform to have probably experienced a change in flow direction whenever the banks have flooded or become exposed. Other sites have probably experienced continuous flow into the sediment. Although diagenesis prevents assignment of accurate ages, it is sufficiently systematic that it can be corrected for and each aragonite-rich package assigned to a unique highstand interval. Site 1005 has sediment packages from highstands associated with marine isotope Stages 1, 5, 7, 9, and 11. Site 1006 is similar, except that the Stage 7 highstand is missing, at least in Hole 1006A. Site 1003 has sediment only from Stage 1 and 11 highstands within the U-Th age range. And Site 1007 has sediment only from the stage 1 highstand. This information will allow the construction of better age models for these sites. No high-aragonite sediments are seen for Stage 3 or Substages 5a and 5c. Unless rather unusual erosion has occurred, this indicates that the banks did not flood during these periods. If true, this would require the sea level for Substages 5a and 5c to have remained at least ~10 m lower than today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The NWW-striking Qinling Orogen formed in the Triassic by collision between the North China and Yangtze Cratons. Triassic granitoid intrusions, mostly middle- to high-K, calc-alkaline in composition, are widespread in this orogen, but contemporaneous intrusions are rare in the southern margin of the North China Craton, an area commonly considered as the hinterland belt of the orogen. In this paper, we report zircon U-Pb ages, elemental geochemistry, and Sr-Nd-Hf isotope data for the Laoniushan granitoid complex that was emplaced in the southern margin of the North China Craton. Zircon U-Pb dating shows that the complex was emplaced in the late Triassic (228±1 to 215±4 Ma), indicating that it is part of the post-collisional magmatism in the Qinling Orogen. The complex consists of, from early to late, biotite monzogranite, quartz diorite, quartz monzonite, and hornblende monzonite, which have a wide compositional range, e.g., SiO2=55.9-70.6 wt%, K2O+Na2O=6.6-10.2 wt%, and Mg# of 24 to 54. Rocks of the biotite monzogranite have high Al2O3(15.5-17.4 wt%), Sr(396-1398 ppm) and Ba(1284-3993 ppm) contents and La/Yb(mostly 14-30) and Sr/Y(mostly 40-97) ratios, but low Yb(mostly 1.3-1.6 ppm) and Y(mostly14-19 ppm) contents, features typical of adakite. The quartz monzonite, hornblende monzonite and quartz diorite have a shoshonitic affinity, with K2O up to 5.58 wt% and K2O/Na2O ratios averaging 1.4. The rocks are characterized by strong LREE/HREE fractionation in chondrite-normalized REE pattern, without obvious Eu anomalies, and show enrichment in large ion lithophile elements but depletion in high field strength elements (Nb, Ta, Ti). The biotite monzogranite (228 Ma) has initial 87Sr/86Sr ratios of 0.7061 to 0.7067, eNd(t) values of -9.2 to -12.6, and ?Hf(t) values of -9.0 to -15.1; whereas the shoshonitic granitoids (mainly 217-215 Ma) have similar initial 87Sr/86Sr ratios (0.7065 to 0.7075) but more radiogenic eNd(t) (-12.4 to -17.0) and eHf(t) (-14.1 to -17.0). The Sr-Nd-Hf isotope data indicate that the rocks were likely generated by partial melting of an ancient lower continental crust with heterogeneous compositions, as partly confirmed by the widespread presence of the early Paleoproterozoic inherited zircons. Mafic microgranular enclaves (MMEs), characterized by fine-grained igneous textures and an abundance of acicular apatites, are common in the Laoniushan complex. Compared with the host rocks, they have lower SiO2 (48.6-53.7 wt.%) and higher Mg# (51-56), Cr (122-393 ppm), and Ni (24-79 ppm), but equivalent Sr-Nd isotope compositions, indicating that the MMEs likely originated from an ancient enriched lithospheric mantle. The abundance of MMEs in the granitoid intrusions suggests that magma mixing plays an important role in the generation of the Laoniushan complex. Collectively, it is suggested that the Laoniushan complex was a product of post-collisional magmatism related to lithospheric extension following slab break-off. Formation of the adakitic and shoshonitic intrusions in the Laoniushan complex indicates that the Qinling Orogen had evolved into a post-collisional setting by about 230-210 Ma.