2 resultados para NON-IDEAL POWER SOURCES

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides continuous measurements of partial pressure of carbon dioxide (pCO2), using a ProOceanus CO2-Pro instrument mounted on the flowthrough system. This automatic sensor is fitted with an equilibrator made of gas permeable silicone membrane and an internal detection loop with a non-dispersive infrared detector of PPSystems SBA-4 CO2 analyzer. A zero-CO2 baseline is provided for the subsequent measurements circulating the internal gas through a CO2 absorption chamber containing soda lime or Ascarite. The frequency of this automatic zero point calibration was set to be 24 hours. All data recorded during zeroing processes were discarded with the 15-minute data after each calibration. The output of CO2-Pro is the mole fraction of CO2 in the measured water and the pCO2 is obtained using the measured total pressure of the internal wet gas. The fugacity of CO2 (fCO2) in the surface seawater, whose difference with the atmospheric CO2 fugacity is proportional to the air-sea CO2 fluxes, is obtained by correcting the pCO2 for non-ideal CO2 gas concentration according to Weiss (1974). The fCO2 computed using CO2-Pro measurements was corrected to the sea surface condition by considering the temperature effect on fCO2 (Takahashi et al., 1993). The surface seawater observations that were initially estimated with a 15 seconds frequency were averaged every 5-min cycle. The performance of CO2-Pro was adjusted by comparing the sensor outputs against the thermodynamic carbonate calculation of pCO2 using the carbonic system constants of Millero et al. (2006) from the determinations of total inorganic carbon (CT ) and total alkalinity (AT ) in discrete samples collected at sea surface. AT was determined using an automated open cell potentiometric titration (Haraldsson et al. 1997). CT was determined with an automated coulometric titration (Johnson et al. 1985; 1987), using the MIDSOMMA system (Mintrop, 2005). fCO2 data are flagged according to the WOCE guidelines following Pierrot et al. (2009) identifying recommended values and questionable measurements giving additional information about the reasons of the questionability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of aerial photographs of sea ice floes in the marginal ice zone (MIZ) of Prydz Bay acquired from December 2004 to February 2005 during the 21st Chinese National Antarctic Research Expedition, image processing techniques are employed to extract some geometric parameters of floes from two merged transects covering the whole MIZ. Variations of these parameters with the distance into the MIZ are then obtained. Different parameters of floe size, namely area, perimeter, and mean caliper diameter (MCD), follow three similar stages of increasing, flat and increasing again, with distance from the open ocean. Floe shape parameters (roundness and the ratio of perimeter to MCD), however, have less significant variations than that of floe size. Then, to modify the deviation of the cumulative floe size distribution from the ideal power law, an upper truncated power-law function and a Weibull function are used, and four calculated parameters of the above functions are found to be important descriptors of the evolution of floe size distribution in the MIZ. Among them, Lr of the upper truncated power-law function indicates the upper limit of floe size and roughly equals the maximum floe size in each square sample area. L0 in the Weibull distribution shows an increasing proportion of larger floes in squares farther from the open ocean and roughly equals the mean floe size. D in the upper truncated power-law function is closely associated with the degree of confinement during ice breakup. Its decrease with the distance into MIZ indicates the weakening of confinement conditions on floes owing to wave attenuation. The gamma of the Weibull distribution characterizes the degree of homogeneity in a data set. It also decreases with distance into MIZ, implying that floe size distributes increase in range. Finally, a statistical test on floe size is performed to divide the whole MIZ into three distinct zones made up of floes of quite different characteristics. This zonal structure of floe size also agrees well with the trends of floe shape and floe size distribution, and is believed to be a straightforward result of wave-ice interaction in the MIZ.