6 resultados para NIL

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concentrations of total organic carbon (TOC) were determined on samples collected during six cruises in the northern Arabian Sea during the 1995 US JGOFS Arabian Sea Process Study. Total organic carbon concentrations and integrated stocks in the upper ocean varied both spatially and seasonally. Highest mixed-layer TOC concentrations (80-100 µM C) were observed near the coast when upwelling was not active, while upwelling tended to reduce local concentrations. In the open ocean, highest mixed-layer TOC concentrations (80-95 µM C) developed in winter (period of the NE Monsoon) and remained through mid summer (early to mid-SW Monsoon). Lowest open ocean mixed-layer concentrations (65-75 µM C) occurred late in the summer (late SW Monsoon) and during the Fall Intermonsoon period. The changes in TOC concentrations resulted in seasonal variations in mean TOC stocks (upper 150 m) of 1.5-2 mole C/m**2, with the lowest stocks found late in the summer during the SW Monsoon-Fall Intermonsoon transition. The seasonal accumulation of TOC north of 15°N was 31-41 x 10**12 g C, mostly taking place over the period of the NE Monsoon, and equivalent to 6-8% of annual primary production estimated for that region in the mid-1970s. A net TOC production rate of 12 mmole C/m**2/d over the period of the NE Monsoon represented ~80% of net community production. Net TOC production was nil during the SW Monsoon, so vertical export would have dominated the export terms over that period. Total organic carbon concentrations varied in vertical profiles with the vertical layering of the water masses, with the Persian Gulf Water TOC concentrations showing a clear signal. Deep water (>2000 m) TOC concentrations were uniform across the basin and over the period of the cruises, averaging 42.3±1.4 µM C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contributions of total organic carbon and nitrogen to elemental cycling in the surface layer of the Sargasso Sea are evaluated using a 5-yr time-series data set (1994-1998). Surface-layer total organic carbon (TOC) and total organic nitrogen (TON) concentrations ranged from 60 to 70 µM C and 4 to 5.5 µM N seasonally, resulting in a mean C : N molar ratio of 14.4±2.2. The highest surface concentrations varied little during individual summer periods, indicating that net TOC production ceased during the highly oligotrophic summer season. Winter overturn and mixing of the water column were both the cause of concentration reductions and the trigger for net TOC production each year following nutrient entrainment and subsequent new production. The net production of TOC varied with the maximum in the winter mixed-layer depth (MLD), with greater mixing supporting the greatest net production of TOC. In winter 1995, the TOC stock increased by 1.4 mol C/m**2 in response to maximum mixing depths of 260 m. In subsequent years experiencing shallower maxima in MLD (<220 m), TOC stocks increased <0.7 mol C/m**2. Overturn of the water column served to export TOC to depth (>100 m), with the amount exported dependent on the depth of mixing (total export ranged from 0.4 to 1.4 mol C/m**2/yr). The exported TOC was comprised both of material resident in the surface layer during late summer (resident TOC) and material newly produced during the spring bloom period (fresh TOC). Export of resident TOC ranged from 0.5 to 0.8 mol C/m**2/yr, covarying with the maximum winter MLD. Export of fresh TOC varied from nil to 0.8 mol C/m**2/yr. Fresh TOC was exported only after a threshold maximum winter MLD of ~200 m was reached. In years with shallower mixing, fresh TOC export and net TOC production in the surface layer were greatly reduced. The decay rates of the exported TOC also covaried with maximum MLD. The year with deepest mixing resulted in the highest export and the highest decay rate (0.003 1/d) while shallow and low export resulted in low decay rates (0.0002 1/d), likely a consequence of the quality of material exported. The exported TOC supported oxygen utilization at dC : dO2 molar ratios ranging from 0.17 when TOC export was low to 0.47 when it was high. We estimate that exported TOC drove 15-41% of the annual oxygen utilization rates in the 100-400 m depth range. Finally, there was a lack of variability in the surface-layer TON signal during summer. The lack of a summer signal for net TON production suggests a small role for N2 fixation at the site. We hypothesize that if N2 fixation is responsible for elevated N : P ratios in the main thermocline of the Sargasso Sea, then the process must take place south of Bermuda and the signal transported north with the Gulf Stream system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep ocean circulation has been considered relatively stable during interglacial periods, yet little is known about its behavior on submillennial time scales. Using a subcentennially resolved epibenthic foraminiferal d13C record we show that North Atlantic Deep Water (NADW) influence was strong at the onset of the last interglacial period and then interrupted by several prominent, centennial-scale reductions. These NADW transients occurred during periods of increased ice rafting and southward expansions of polar water influence, suggesting that a buoyancy threshold for convective instability was triggered by freshwater and circum-Arctic cryosphere changes. The deep Atlantic chemical changes were similar in magnitude to those associated with glaciations, implying that the canonical view of a relatively stable interglacial circulation may not hold for conditions warmer/fresher than at present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment and interstitial water samples recovered during DSDP Leg 93 at Site 603 (lower continental rise off Cape Hatteras) were analyzed for a series of geochemical facies indicators to elucidate the nature and origin of the sedimentary material. Special emphasis was given to middle Cretaceous organic-matter-rich turbidite sequences of Aptian to Turanian age. Organic carbon content ranges from nil in pelagic claystone samples to 4.2% (total rock) in middle Cretaceous carbonaceous mudstones of turbiditic origin. The organic matter is of marine algal origin with significant contributions of terrigenous matter via turbidites. Maturation indices (vitrinite reflectance) reveal that the terrestrial humic material is reworked. Maturity of autochthonous material (i.e., primary vitrinite) falls in the range of 0.3 to 0.6% Carbohydrate, hydrocarbon, and microscopic investigations reveal moderate to high microbial degradation. Unlike deep-basin black shales of the South and North Atlantic, organic-carbon-rich members of the Hatteras Formation lack trace metal enrichment. Dissolved organic carbon (DOC) in interstitial water samples ranges from 34.4 ppm in a sandstone sample to 126.2 ppm in an organic-matter-rich carbonaceous claystone sample. One to two percent of DOC is carbohydratecarbon.