12 resultados para N65 - Asia including Middle East
em Publishing Network for Geoscientific
Resumo:
A probabilistic function (integrated source contribution function, ISCF) based on backward air mass trajectory calculation was developed to track sources and atmospheric pathways of polycyclic aromatic hydrocarbons (PAHs) to the Canadian High Arctic station of Alert. In addition to the movement of air masses, the emission intensities at the sources and the major processes of partition, indirect photolysis, and deposition occurring on the way to the Arctic were incorporated into the ISCF. The predicted temporal trend of PAHs at Alert was validated by measured PAH concentrations throughout 2004. The PAH levels in the summer are orders of magnitude lower than those in the winter and spring when long-range atmospheric transport events occur more frequently. PAHs observed at Alert are mostly from East Asia (including Russia Far East), North Europe (including European Russia), and North America. These sources account for 25, 45, and 27% of PAHs atmospheric level at Alert, respectively. Source regions and transport pathways contributing to the PAHs contamination in the Canadian High Arctic vary seasonally. In the winter, Russia and Europe are the major sources. PAHs from these sources travel eastward and turn to the north at approximately 120°E before reaching Alert, in conjunction with the well- known Arctic haze events. In the spring, PAHs from Russia and Europe first migrate to the west and then turn to the north at 60°W toward Alert. The majority of PAHs in the summer are from northern Canada where they are carried to Alert via low- level transport pathways. In the fall, 70% of PAHs arriving at Alert are delivered from North American sources.
Resumo:
The upper Holocene marine section from a kasten core taken from the oxygen minimum zone off Karachi (Pakistan) at water depth 700 m contains continuously laminated sediments with a sedimentation rate of 1.2 mm/yr and a unique record of monsoonal climatic variability covering the past 5000 years. Our chronostratigraphy is based on varve counts verified by conventional and AMS14C dating. Individual hemipelagic varve couplets are about 0.8-1.5 mm thick, with light-colored terrigenous laminae (A) deposited mainly during the winter monsoon alternating with dark-colored laminae (B) rich in marine organic matter, coccoliths, and fish debris that reflect deposition during the high-productivity season of the late summer monsoon (August-October). Precipitation and river runoff appear to control varve thickness and turbidite frequency. We infer that precipitation decreased in the river watershed (indicated by thinning varves) after 3500-4000 yr B.P. This is about the time of increasing aridification in the Near East and Middle East, as documented by decreasing Nile River runoff data and lake-level lowstands between Turkey and northwestern India. This precipitation pattern continued until today with precipitation minima about 2200-1900 yr B.P., 1000 yr B.P., and in the late Middle Ages (700-400 yr B.P.), and precipitation maxima in the intervening periods. As documented by spectral analysis, the thickness of varve couplets responds to the average length of a 250-yr cycle, a 125-yr cycle, the Gleissberg cycle of solar activity (95 yr), and a 56-yr cycle of unknown origin. Higher frequency cycles are also present at 45, 39, 29-31, and 14 yr. The sedimentary gray-value also shows strong variability in the 55-yr band plus a 31-yr cycle. Because high-frequency cyclicity in the ENSO band (ca. 3.5 and 5 yr) is only weakly expressed, our data do not support a straightforward interaction of the Pacific ENSO with the monsoon-driven climate system of the Arabian Sea.
Resumo:
This paper provides an overview of dust transport pathways and concentrations over the Arabian Sea during 1995. Results indicate that the transport and input of dust to the region is complex, being affected by both temporally and spatially important processes. Highest values of dust were found off the Omani coast and in the entrance to the Gulf of Oman. Dust levels were generally lower in summer than the other seasons, although still relatively high compared to other oceanic regions. The Findlater jet, rather than acting as a source of dust from Africa, appears to block the direct transport of dust to the open Arabian Sea from desert dust source regions in the Middle East and Iran/Pakistan. Dust transport aloft, above the jet, rather than at the surface, may be more important during summer. In an opposite pattern to dust, sea salt levels were exceedingly high during the summer monsoon, presumably due to the sustained strong surface winds. The high sea salt aerosols during the summer months may be impacting on the strong aerosol reflectance and absorbance signals over the Arabian Sea that are detected by satellite each year.
Resumo:
The environmental interpretation of the 13C/12C variations in the skeletons of massive corals is still a matter of debate. A 19-year seasonal skeletal 13C/12C record of a shallow-water Pontes coral from the northern Red Sea (Gulf of Aqaba) documents interannual events of extraordinarily large plankton blooms, indicated by anomalous 13C depletions in the coral skeleton. These blooms are caused by deep vertical water mass mixing, convectively driven in colder winters, which results in increased supplies of nutrients to the surface waters. The deep vertical mixings can sometimes be driven by the cooling occurring throughout the Middle East after large tropical volcanic eruptions. We therefore have evidence in our coral skeletal 13C/12C record for an indirect volcanic signal of the eruptions of El Chichón (1982) and Mount Pinatubo (1991). Deep mixing induced 13C/12C variations of the dissolved inorganic carbon in the surface waters can be neglected at this location. We therefore suggest that the 13C skeletal depletions can be best explained by changes in the coral's autotrophy-heterotrophy diet, through increased heterotrophic feeding on Zooplankton during the blooms. Increased feeding on 13C-depleted Zooplankton or increased heterotrophy at the expense of autotrophy can both result in a 13C-depleted coral skeleton. However, this suggestion requires more testing. If our conclusions are substantiated, seasonal skeletal 13C/12C records of corals which change from autotrophy under normal conditions to increased heterotrophy during bloom events may be used as indicators of ocean paleoproductivity at interannual resolution, available from no other source.
Resumo:
Eolian grain size and flux were measured on samples from 11 Arabian Sea sediment traps deployed 200-1250 km offshore. The timing of increased grain size is coincident with the onset of strong summer monsoon winds and dust storm activity over the Arabian Peninsula and Middle East. Data spanning a full annual cycle show that eolian grain size is highly correlated with barometric pressure (r=-0.91) and wind speed (r=0.84), enabling calibration of the downcore record in terms of these primary meteorological variables. Eolian flux is highly correlated with organic carbon flux (r=0.80); both increase 6-8 weeks after the grain size increase and summer monsoon onset. This lag, and the low correlation between eolian grain size and eolian flux (r=0.36), likely result from the differential sinking rates of large and small dust particles in the surface waters as well as biological scavenging associated with monsoon-induced productivity.
Resumo:
The last interglacial period (about 125,000 years ago) is thought to have been at least as warm as the present climate (Kukla et al., 2002, doi:10.1006/qres.2001.2316). Owing to changes in the Earth's orbit around the Sun, it is thought that insolation in the Northern Hemisphere varied more strongly than today on seasonal timescales (Berger, 1987, doi:10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2), which would have led to corresponding changes in the seasonal temperature cycle (Montoya et al., 2000, doi:10.1175/1520-0442(2000)013<1057:CSFKBW>2.0.CO;2). Here we present seasonally resolved proxy records using corals from the northernmost Red Sea, which record climate during the last interglacial period, the late Holocene epoch and the present. We find an increased seasonality in the temperature recorded in the last interglacial coral. Today, climate in the northern Red Sea is sensitive to the North Atlantic Oscillation (Felis et al., 2000 doi:10.1029/1999PA000477; Rimbu et al., 2001, doi:10.1029/2001GL013083), a climate oscillation that strongly influences winter temperatures and precipitation in the North Atlantic region. From our coral records and simulations with a coupled atmosphere-ocean circulation model, we conclude that a tendency towards the high-index state of the North Atlantic Oscillation during the last interglacial period, which is consistent with European proxy records (Zagwijn, 1996, doi:10.1016/0277-3791(96)00011-X; Aalbersberg and Litt, 1998, doi:10.1002/(SICI)1099-1417(1998090)13:5<367::AID-JQS400>3.0.CO;2-I; Klotz et al., 2003, doi:10.1016/S0921-8181(02)00222-9), contributed to the larger amplitude of the seasonal cycle in the Middle East.
Coral oxygen isotope and Sr/Ca data from the Northern Gulf of Aqaba (late Holocene), sample AQB-10-B