6 resultados para N(2) adsorption

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediments associated with freshwater ferromanganese concretions in Lake Charlotte, Nova Scotia, contained microscopic precipitates of manganese and iron. These precipitates were dispersed throughout the sediment and were as rich in nickel, cobalt, and copper as deep sea concretions. In addition, the development of the precipitates appeared to be associated with the microbial oxidation of manganese. Results from the deployment of poisoned and unpoisoned dialysis probes or peepers demonstrated that microbial manganese oxidation and nickel binding were closely associated, causing a fivefold enhancement of abiotic processes such as adsorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bio-optical characteristics of phytoplankton have been observed during two-year monitoring in the western Black Sea. High variability in light absorption coefficient of phytoplankton was due to change of pigment concentration and chlorophyll a specific absorption coefficient. A relationships between light absorption coefficients and chlorophyll a concentration have been found: for the blue maximum (a_ph(440) = 0.0413x**0.628; R**2 = 0.63) and for the red maximum (?_ph(678) = 0.0190x**0.843; R**2 = 0.83). Chlorophyll a specific absorption coefficients decreased while pigment concentration in the Sea increased. Observed variability in chlorophyll a specific absorption coefficient at chlorophyll a concentrations <1.0 mg/m**3 had seasonal features and was related with seasonal change of intracellular pigment concentration. Ratio between the blue and red maxima decreased with increasing chlorophyll a concentration (? = 2.14 x**-0.20; R**2 = 0.41). Variability of spectrally averaged absorption coefficient of phytoplankton (a'_ph ) on 95% depended on absorption coefficient at the blue maximum (y = 0.421x; R**2 = 0.95). Relation of a_ph with chlorophyll a concentration was described by a power function (y = 0.0173x**0.0709; R**2 = 0.65). Change of spectra shape was generally effected by seasonal dynamics of intracellular pigment concentration, and partly effected by taxonomic and cell-size structure of phytoplankton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the context of the KErguelen Ocean and Plateau compared Study (KEOPS, 19 January-13 February 2005), particle dynamics were investigated using thorium isotope measurements over and off the Kerguelen plateau. Dissolved and particulate 230Th and 232Th samples were collected at nine stations. Dissolved excess 230Th concentrations (230Thxs) vary from 0.5 to 20.8 fg/kg and particulate 230Thxs concentrations from 0.1 to 10.0 fg/kg. Dissolved and particulate 232Th concentration ranges are 16.8-450.2 pg/kg and 3.8-502.8 pg/kg, respectively. The 230Thxs concentrations increase linearly with depth down to the bottom at most of the plateau stations and down to 1000 m at the off-plateau stations. This linear trend is observed down to the bottom (1550 m) at Kerfix, the open-ocean "upstream" station located west of the Kerguelen plateau. A simple reversible scavenging model applied to these data allowed the estimation of adsorption rate constant (k1~=0.2-0.8 per year), desorption rate constant (k-1~=1-8 per year) and partition coefficients (average K=0.16±0.07). Calculated particle settling velocities S deduced from this simple model are ca. 500 m/year at most of the plateau stations and 800 m/year at all the off-plateau stations. The plateau settling velocities are relatively low for such a productive site, compared to the surrounding HNLC areas. The difference might reflect the fact that lateral advection is neglected in this model. Taking this advection into account allows the reconstruction of the observed 230Thxs linear distributions, but only if faster settling velocities are considered. This implies that the 1D model strongly underestimates the settling velocity of the particles. In the deep layers, the occurrence of intense boundary scavenging along the escarpment due to bottom sediment re-suspension and interaction with a nepheloid layer, yielding a removal of ?50% of the Th stock along the northwestward transect, is suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polonium-210 and Lead-210 have been measured in the water column and on suspended particulate matter during the POLARSTERN cruise ARK-XXII/2. The data have been submitted to Pangaea following a Polonium-Lead intercalibration exercise organized by GEOTRACES, where the AWI lab results range within the data standard deviation from 10 participating labs. Polonium-210 and Lead-210 in the ocean can be used to identify the sources and sinks of suspended matter. In seawater, Polonium-210 (210Po) and Lead-210 (210Pb) are produced by stepwise radioactive decay of Uranium-238. 210Po (138 days half life) and 210Pb (22.3 years half life) have high affinities for suspended particles. Those radionuclides are present in dissolved form and adsorbed onto particles. Following adsorption onto particle surfaces, 210Po especially is transported into the interior of cells where it bonds to proteins. In this way, 210Po also accumulates in the food chain. 210Po is therefore considered to be a good tracer for POC, and traces particle export over a timescale of month. 210Pb (22.3 years half life) adsorbs preferably onto structural components of cells, biogenic silica and lithogenic particles, and is therefore a better tracer more rapidly sinking matter. Our goal during ARK XXII/2 was to trace pathways of particulate and dissolved matter leaving the Siberian Shelf. The pathways of particulate and dissolved matter will be followed by the combined use of 210Po and 234Th as a tracer pair (and perhaps 210Pb) for particle flux (Cai, P.; Rutgers van der Loeff, MM (2008) doi:10.1594/PANGAEA.708354). This information gathered from the water column will be complemented with the results of the 210Po-210Pb study in sea ice (Camara-Mor, P, Instituto de Ciencias del Mar-SCIC, Barcelona, Spain) to provide a more thorough picture of particle transport from the shelf to the open sea and from surface to depth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reviews the progress made in CO2 capture, storage, and utilization in Chinese Academy of Sciences (CAS). New concepts such as adsorption using dry regenerable solid sorbents as well as functional ionic liquids (ILs) for CO2 capture are thoroughly discussed. Carbon sequestration, such as geological sequestration, mineral carbonation and ocean storage are also covered. The utilization of CO2 as a raw material in the synthesis of chemicals and liquid energy carriers which offers a way to mitigate the increasing CO2 buildup is introduced.