200 resultados para Mya arenaria
em Publishing Network for Geoscientific
Resumo:
Although ocean acidification is expected to reduce carbonate saturation and yield negative impacts on open-ocean calcifying organisms in the near future, acidification in coastal ecosystems may already be affecting these organisms. Few studies have addressed the effects of sedimentary saturation state on benthic invertebrates. Here, we investigate whether sedimentary aragonite saturation (Omega aragonite) and proton concentration ([H+]) affect burrowing and dispersal rates of juvenile soft-shell clams (Mya arenaria) in a laboratory flume experiment. Two size classes of juvenile clams (0.5-1.5 mm and 1.51-2.5 mm) were subjected to a range of sediment Omega aragonite and [H+] conditions within the range of typical estuarine sediments (Omega aragonite 0.21-1.87; pH 6.8-7.8; [H+] 1.58 × 10**-8-1.51 × 10**- 7) by the addition of varying amounts of CO2, while overlying water pH was kept constant ~ 7.8 (Omega aragonite ~ 1.97). There was a significant positive relationship between the percent of juvenile clams burrowed in still water and Omega aragonite and a significant negative relationship between burrowing and [H+]. Clams were subsequently exposed to one of two different flow conditions (flume; 11 cm/s and 23 cm/s) and there was a significant negative relationship between Omega aragonite and dispersal, regardless of clam size class and flow speed. No apparent relationship was evident between dispersal and [H+]. The results of this study suggest that sediment acidification may play an important role in soft-shell clam recruitment and dispersal. When assessing the impacts of open-ocean and coastal acidification on infaunal organisms, future studies should address the effects of sediment acidification to adequately understand how calcifying organisms may be affected by shifting pH conditions.
Resumo:
In der Nordsee wurden auf der Forschungsplattform FINO 1 Felduntersuchungen durchgeführt, um spezielle Fragen zu möglichen Auswirkungen von Offshore-Windenergieparks auf die marine Umwelt zu beantworten. Der Fokus war dabei auf die Konsequenzen für die Lebensgemeinschaft am Meeresboden gerichtet. Es wurden die benthosökologischen Prozesse im Nahbereich der Piles sowie die mittelfristige Entwicklung der Aufwuchsfauna auf der künstlichen Unterwasserstruktur dokumentiert. Die Ansammlung pelagischer Fischen um die Plattform und der Export organischen Materials von der Plattform wurden quantifiziert. Die räumliche Ausdehnung und die Erheblichkeit von Auswirkungen auf die Lebensgemeinschaften des Meeresbodens wurden anhand mathematischer Modellierung abgeschätzt. Zusätzlich wurde die Anwendbarkeit der elektrochemischen Akretionstechnologie zur Schaffung naturnaher Kalksubstrate in der Nordsee getestet und geeignete Parameter für eine erfolgreiche Umsetzung unter Nordseebedingungen ermittelt. Die auch 4,5 Jahre nach Errichtung der Plattform noch ansteigende Artenzahl der Aufwuchsfauna lässt darauf schließen, dass der Sukzessionsprozess noch nicht abgeschlossen ist. Die stark vertikal zonierte Aufwuchsfauna auf der Unterwasserkonstruktion erreicht eine Masse von ca. 5 Tonnen mit ausgeprägten saisonalen Schwankungen. Anhand von echoakustischen Untersuchungen wurden saisonal auftretende Ansammlungen pelagischer Fische um die Plattform dokumentiert. Der Nahbereich der Plattform unterschied sich durch eine Schillauflage und eine räumlich und zeitlich sehr variable Sediment- und Bodenfaunazusammensetzung deutlich von einem Referenzgebiet in 200-400 m Abstand von der Plattform. Eine konzentrische Zonierung mit unterschiedlich stark ausgeprägten Veränderungen der Bodenfauna lässt auf komplexe Veränderung des gesamten lokalen Nahrungsgefüges im Nahbereich der Plattform schließen. Anhand einer Modellierung konnte der Materialexport in die umgebenden Weichbodenbereiche für einzelne Piles und einen hypothetischen Windpark abgeschätzt werden. Die lokale Ausbildung einer hohen Biomasse auf der Unterwasserkonstruktion von WEA sowie der Export mit anschließender Sedimentation lassen zumindest lokal einen erheblichen Einfluss auf Stoff- und Energieflüsse erwarten.
Resumo:
After detachment from benthic habitats, the epibiont assemblages on floating seaweeds undergo substantial changes, but little is known regarding whether succession varies among different seaweed species. Given that floating algae may represent a limiting habitat in many regions, rafting organisms may be unselective and colonize any available seaweed patch at the sea surface. This process may homogenize rafting assemblages on different seaweed species, which our study examined by comparing the assemblages on benthic and floating individuals of the fucoid seaweeds Fucus vesiculosus and Sargassum muticum in the northern Wadden Sea (North Sea). Species richness was about twice as high on S. muticum as on F. vesiculosus, both on benthic and floating individuals. In both seaweed species benthic samples were more diverse than floating samples. However, the species composition differed significantly only between benthic thalli, but not between floating thalli of the two seaweed species. Separate analyses of sessile and mobile epibionts showed that the homogenization of rafting assemblages was mainly caused by mobile species. Among these, grazing isopods from the genus Idotea reached extraordinarily high densities on the floating samples from the northern Wadden Sea, suggesting that the availability of seaweed rafts was indeed limiting. Enhanced break-up of algal rafts associated with intense feeding by abundant herbivores might force rafters to recolonize benthic habitats. These colonization processes may enhance successful dispersal of rafting organisms and thereby contribute to population connectivity between sink populations in the Wadden Sea and source populations from up-current regions.