106 resultados para Mustafa Barghouti
em Publishing Network for Geoscientific
Resumo:
We report on metal enrichment along a natural pH gradient owing to increased CO2 degassing at cold, shal- low seeps of Vulcano Island in the Mediterranean Sea, off Sicily. We assessed composition of unfiltered and filtered seawater (b100 nm) along acidic zones ranging between ambient and pH 5, and showed that most seep derived elements are present as nanoclusters which then aggregate into larger colloids while mixing with ambient seawater along a pH gradient. Size and elemental composition of such naturally occurring nanoparticles assessed by modern characterisation methods were in good agreement with the results from conventional analytical methods. We provide analytical evidence for the presence in the water column of a large fraction of seep derived ele- ments (e.g. approximately 50% of iron, over 80% of Mn, 100% of Cr, S and Zn) in the form of nano sized par- ticles (e.g. b100 nm) even at typical open ocean pHs. We launch in situ sampling protocols and sample preparation procedures for multi-method suitable to obtain accurate measurements on nanoparticles from environmental samples. Based on our results a first insight to the formation of natural nanoparticles at cold CO2 seeps is presented and the persistence of such nano-clusters in the surrounding seawater is stipulated.
Resumo:
The Red Sea is a very young ocean, and is one of the most interesting areas on Earth (ocean in statu nascendi). It is the only ocean where hydrothermal activity associated with ore formation occurs in a sterile environment (anoxic, hot, saline). In addition, its geographical position means that it is predestined to record the monsoonal history of the region in detailed sedimentary sequences. The major aim of the present project is to investigate the dynamics of hydrothermal systems in selected Deeps (Atlantis-II, Discovery, Kebrit, Al Wajh), Additional palaeoceanographic and microbiological questions should also be addressed. Specific aims are: 1. To study the hydrographic changes in individual Deeps (hydrothermal region Atlantis-II) and to investigate the causes of the temperature increase in the last few years (increased heat flow - higher temperature of the brine supply - higher brine flow rates?). 2.a. To document the influence of the hydrothermal systems on the sedimentary organic matter in the Deeps. In particular, the thermogenic production and migration of hydrocarbons in the sediments will be studied. The complex formation mechanisms (bacterial, thermogenic) of short-chain hydrocarbons (trace gases) will also be examined, 2.b. in addition, the polar and macromolecular fraction in samples from the various deeps will be studied in order to elucidate the formation, structure and source of the macromolecular oil fraction. 3. To clarify the palaeoceanographic conditions, sea-level changes and the climatic history (relationship of the circulation system and nutrient supply to the monsoon) of the southern Red Sea. 4. To separate microorganisms from the brines and to characterise them in terms of their metabolic physiology and ecology, and to describe their taxonomy.
Physical oceanography measured on water bottle samples during CUBUKLU cruise CENTRAL_AEGEAN_SEA_1987