8 resultados para Multivariate analysis of variance
em Publishing Network for Geoscientific
Resumo:
The chemical composition of shells of the planktonic foraminifer Globigerinoides ruber (white) is frequently used to determine past sea surface conditions. Recently, it has been shown that arbitrarily defined morphotypes within this species exhibit different chemical and isotopic signatures. Here, we investigate the occurrence through time and in space of morphological types of G. ruber (white) in late Quaternary and Holocene sediments of the central and the eastern Mediterranean Sea. In 115 samples representing two distinct time intervals (MIS 1-2 and MIS 9-12) at ODP Site 964 and the piston core GeoTü-SL96, we have defined three morphological types within this species and determined their relative abundances and stable isotopic composition. A quantitative analysis of morphological variation within G. ruber (white) in four samples revealed that the subjectively defined morphotypes occupy separate segments of a continuous and homogenous morphospace. We further show that the abundance of the morphotypes changes significantly between glacials and interglacials and that the three morphotypes of G. ruber show significant offsets in their stable isotopic composition. These offsets are consistent within glacial and interglacial stages but their sign is systematically reversed between the two Sites. Since the isotopic shifts among the three G. ruber morphotypes are systematic and often exceed 1per mil, their understanding is essential for the interpretation of all G. ruber-based proxy records for the paleoceanographic development of the Mediterranean during the late Quaternary.
Resumo:
Assemblages of organic-walled dinoflagellate cysts (dinocysts) from 116 marine surface samples have been analysed to assess the relationship between the spatial distribution of dinocysts and modern local environmental conditions [e.g. sea surface temperature (SST), sea surface salinity (SSS), productivity] in the eastern Indian Ocean. Results from the percentage analysis and statistical methods such as multivariate ordination analysis and end-member modelling, indicate the existence of three distinct environmental and oceanographic regions in the study area. Region 1 is located in western and eastern Indonesia and controlled by high SSTs and a low nutrient content of the surface waters. The Indonesian Throughflow (ITF) region (Region 2) is dominated by heterotrophic dinocyst species reflecting the region's high productivity. Region 3 is encompassing the area offshore north-west and west Australia which is characterised by the water masses of the Leeuwin Current, a saline and nutrient depleted southward current featuring energetic eddies.
Resumo:
Public participation is an integral part of Environmental Impact Assessment (EIA), and as such, has been incorporated into regulatory norms. Assessment of the effectiveness of public participation has remained elusive however. This is partly due to the difficulty in identifying appropriate effectiveness criteria. This research uses Q methodology to discover and analyze stakeholder's social perspectives of the effectiveness of EIAs in the Western Cape, South Africa. It considers two case studies (Main Road and Saldanha Bay EIAs) for contextual participant perspectives of the effectiveness based on their experience. It further considers the more general opinion of provincial consent regulator staff at the Department of Environmental Affairs and the Department of Planning (DEA&DP). Two main themes of investigation are drawn from the South African National Environmental Management Act imperative for effectiveness: firstly, the participation procedure, and secondly, the stakeholder capabilities necessary for effective participation. Four theoretical frameworks drawn from planning, politics and EIA theory are adapted to public participation and used to triangulate the analysis and discussion of the revealed social perspectives. They consider citizen power in deliberation, Habermas' preconditions for the Ideal Speech Situation (ISS), a Foucauldian perspective of knowledge, power and politics, and a Capabilities Approach to public participation effectiveness. The empirical evidence from this research shows that the capacity and contextual constraints faced by participants demand the legislative imperatives for effective participation set out in the NEMA. The implementation of effective public participation has been shown to be a complex, dynamic and sometimes nebulous practice. The functional level of participant understanding of the process was found to be significantly wide-ranging with consequences of unequal and dissatisfied stakeholder engagements. Furthermore, the considerable variance of stakeholder capabilities in the South African social context, resulted in inequalities in deliberation. The social perspectives revealed significant differences in participant experience in terms of citizen power in deliberation. The ISS preconditions are highly contested in both the Saldanha EIA case study and the DEA&DP social perspectives. Only one Main Road EIA case study social perspective considered Foucault's notion of governmentality as a reality in EIA public participation. The freedom of control of ones environment, based on a Capabilities approach, is a highly contested notion. Although agreed with in principle, all of the social perspectives indicate that contextual and capacity realities constrain its realisation. This research has shown that Q method can be applied to EIA public participation in South Africa and, with the appropriate research or monitoring applications it could serve as a useful feedback tool to inform best practice public participation.
Resumo:
Manual and low-tech well drilling techniques have potential to assist in reaching the United Nations' millennium development goal for water in sub-Saharan Africa. This study used publicly available geospatial data in a regression tree analysis to predict groundwater depth in the Zinder region of Niger to identify suitable areas for manual well drilling. Regression trees were developed and tested on a database for 3681 wells in the Zinder region. A tree with 17 terminal leaves provided a range of ground water depth estimates that were appropriate for manual drilling, though much of the tree's complexity was associated with depths that were beyond manual methods. A natural log transformation of groundwater depth was tested to see if rescaling dataset variance would result in finer distinctions for regions of shallow groundwater. The RMSE for a log-transformed tree with only 10 terminal leaves was almost half that of the untransformed 17 leaf tree for groundwater depths less than 10 m. This analysis indicated important groundwater relationships for commonly available maps of geology, soils, elevation, and enhanced vegetation index from the MODIS satellite imaging system.
Resumo:
We provide high-resolution sea surface temperature (SST) and paleoproductivity data focusing on Termination 1. We describe a new method for estimating SSTs based on multivariate statistical analyses performed on modern coccolithophore census data, and we present the first downcore reconstructions derived from coccolithophore assemblages at Ocean Drilling Project (ODP) Site 1233 located offshore Chile. We compare our coccolithophore SST record to alkenone-based SSTs as well as SST reconstructions based on dinoflagellates and radiolaria. All reconstructions generally show a remarkable concordance. As in the alkenone SST record, the Last Glacial Maximum (LGM, 19-23 kyr B.P.) is not clearly defined in our SST reconstruction. After the onset of deglaciation, three major warming steps are recorded: from 18.6 to 18 kyr B.P. (~2.6°C), from 15.7 to 15.3 kyr B.P. (~2.5°C), and from 13 to 11.4 kyr B.P. (~3.4°C). Consistent with the other records from Site 1233 and Antarctic ice core records, we observed a clear Holocene Climatic Optimum (HCO) from ~8-12 kyr B.P. Combining the SST reconstruction with coccolith absolute abundances and accumulation rates, we show that colder temperatures during the LGM are linked to higher coccolithophore productivity offshore Chile and warmer SSTs during the HCO to lower coccolithophore productivity, with indications of weak coastal upwelling. We interpret our data in terms of latitudinal displacements of the Southern Westerlies and the northern margin of the Antarctic Circumpolar Current system over the deglaciation and the Holocene.
Resumo:
The assimilation and regeneration of dissolved inorganic nitrogen, and the concentration of N2O, was investigated at stations located in the NW European shelf sea during June/July 2011. These observational measurements within the photic zone demonstrated the simultaneous regeneration and assimilation of NH4+, NO2- and NO3-. NH4+ was assimilated at 1.82-49.12 nmol N/L/h and regenerated at 3.46-14.60 nmol N/L/h; NO2- was assimilated at 0-2.08 nmol N/L/h and regenerated at 0.01-1.85 nmol N/L/h; NO3-was assimilated at 0.67-18.75 nmol N/L/h and regenerated at 0.05-28.97 nmol N/L/h. Observations implied that these processes were closely coupled at the regional scale and that nitrogen recycling played an important role in sustaining phytoplankton growth during the summer. The [N2O], measured in water column profiles, was 10.13 ± 1.11 nmol/L and did not strongly diverge from atmospheric equilibrium indicating that sampled marine regions were neither a strong source nor sink of N2O to the atmosphere. Multivariate analysis of data describing water column biogeochemistry and its links to N-cycling activity failed to explain the observed variance in rates of N-regeneration and N-assimilation, possibly due to the limited number of process rate observations. In the surface waters of five further stations, ocean acidification (OA) bioassay experiments were conducted to investigate the response of NH4+ oxidising and regenerating organisms to simulated OA conditions, including the implications for [N2O]. Multivariate analysis was undertaken which considered the complete bioassay data set of measured variables describing changes in N-regeneration rate, [N2O] and the biogeochemical composition of seawater. While anticipating biogeochemical differences between locations, we aimed to test the hypothesis that the underlying mechanism through which pelagic N-regeneration responded to simulated OA conditions was independent of location. Our objective was to develop a mechanistic understanding of how NH4+ regeneration, NH4+ oxidation and N2O production responded to OA. Results indicated that N-regeneration process responses to OA treatments were location specific; no mechanistic understanding of how N-regeneration processes respond to OA in the surface ocean of the NW European shelf sea could be developed.