6 resultados para Multinomial logit models with random coefficients (RCL)

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. They rather indicate locally inhomogeneous rainfall changes and show, that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shell fluxes of planktonic Foraminifera species vary intra-annually in a pattern that appears to follow the seasonal cycle. However, the variation in the timing and prominence of seasonal flux maxima in space and among species remains poorly constrained. Thus, although changing seasonality may result in a flux-weighted temperature offset of more than 5° C within a species, this effect is often ignored in the interpretation of Foraminifera-based paleoceanographic records. To address this issue we present an analysis of the intra-annual pattern of shell flux variability in 37 globally distributed time series. The existence of a seasonal component in flux variability was objectively characterised using periodic regression. This analysis yielded estimates of the number, timing and prominence of seasonal flux maxima. Over 80% of the flux series across all species showed a statistically significant periodic component, indicating that a considerable part of the intra-annual flux variability is predictable. Temperature appears to be a powerful predictor of flux seasonality, but its effect differs among species. Three different modes of seasonality are distinguishable. Tropical and subtropical species (Globigerinoides ruber (white and pink varieties), Neogloboquadrina dutertrei, Globigerinoides sacculifer, Orbulina universa, Globigerinella siphonifera, Pulleniatina obliquiloculata, Globorotalia menardii, Globoturborotalita rubescens, Globoturborotalita tenella and Globigerinoides conglobatus) appear to have a less predictable flux pattern, with random peak timing in warm waters. In colder waters, seasonality is more prevalent: peak fluxes occur shortly after summer temperature maxima and peak prominence increases. This tendency is stronger in species with a narrower temperature range, implying that warm-adapted species find it increasingly difficult to reproduce outside their optimum temperature range and that, with decreasing mean temperature, their flux is progressively more focussed in the warm season. The second group includes the temperate to cold-water species Globigerina bulloides, Globigerinita glutinata, Turborotalita quinqueloba, Neogloboquadrina incompta, Neogloboquadrina pachyderma, Globorotalia scitula, Globigerinella calida, Globigerina falconensis, Globorotalia theyeri and Globigerinita uvula. These species show a highly predictable seasonal pattern, with one to two peaks a year, which occur earlier in warmer waters. Peak prominence in this group is independent of temperature. The earlier-when-warmer pattern in this group is related to the timing of productivity maxima. Finally, the deep-dwelling Globorotalia truncatulinoides and Globorotalia inflata show a regular and pronounced peak in winter and spring. The remarkably low flux outside the main pulse may indicate a long reproductive cycle of these species. Overall, our analysis indicates that the seasonality of planktonic Foraminifera shell flux is predictable and reveals the existence of distinct modes of phenology among species. We evaluate the effect of changing seasonality on paleoceanographic reconstructions and find that, irrespective of the seasonality mode, the actual magnitude of environmental change will be underestimated. The observed constraints on flux seasonality can serve as the basis for predictive modelling of flux pattern. As long as the diversity of species seasonality is accounted for in such models, the results can be used to improve reconstructions of the magnitude of environmental change in paleoceanographic records.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sedimentary sections of three cores from the Celtic margin provide high-resolution records of the terrigenous fluxes during the last glacial cycle. A total of 21 14C AMS dates allow us to define age models with a resolution better than 100 yr during critical periods such as Heinrich events 1 and 2. Maximum sedimentary fluxes occurred at the Meriadzek Terrace site during the Last Glacial Maximum (LGM). Detailed X-ray imagery of core MD95-2002 from the Meriadzek Terrace shows no sedimentary structures suggestive of either deposition from high-density turbidity currents or significant erosion. Two paroxysmal terrigenous flux episodes have been identified. The first occurred after the deposition of Heinrich event 2 Canadian ice-rafted debris (IRD) and includes IRD from European sources. We suggest that the second represents an episode of deposition from turbid plumes, which precedes IRD deposition associated with Heinrich event 1. At the end of marine isotopic stage 2 (MIS 2) and the beginning of MIS 1 the highest fluxes are recorded on the Whittard Ridge where they correspond to deposition from turbidity current overflows. Canadian icebergs have rafted debris at the Celtic margin during Heinrich events 1, 2, 4 and 5. The high-resolution records of Heinrich events 1 and 2 show that in both cases the arrival of the Canadian icebergs was preceded by a European ice rafting precursor event, which took place about 1-1.5 kyr before. Two rafting episodes of European IRD also occurred immediately after Heinrich event 2 and just before Heinrich event 1. The terrigenous fluxes recorded in core MD95-2002 during the LGM are the highest reported at hemipelagic sites from the northwestern European margin. The magnitude of the Canadian IRD fluxes at Meriadzek Terrace is similar to those from oceanic sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The early Pliocene warm phase was characterized by high sea surface temperatures and a deep thermocline in the eastern equatorial Pacific. A new hypothesis suggests that the progressive closure of the Panamanian seaway contributed substantially to the termination of this zonally symmetric state in the equatorial Pacific. According to this hypothesis, intensification of the Atlantic meridional overturning circulation (AMOC) - induced by the closure of the gateway - was the principal cause of equatorial Pacific thermocline shoaling during the Pliocene. In this study, twelve Panama seaway sensitivity experiments from eight ocean/climate models of different complexity are analyzed to examine the effect of an open gateway on AMOC strength and thermocline depth. All models show an eastward Panamanian net throughflow, leading to a reduction in AMOC strength compared to the corresponding closed-Panama case. In those models that do not include a dynamic atmosphere, deepening of the equatorial Pacific thermocline appears to scale almost linearly with the throughflow-induced reduction in AMOC strength. Models with dynamic atmosphere do not follow this simple relation. There are indications that in four out of five models equatorial wind-stress anomalies amplify the tropical Pacific thermocline deepening. In summary, the models provide strong support for the hypothesized relationship between Panama closure and equatorial Pacific thermocline shoaling.