6 resultados para Multihop routing
em Publishing Network for Geoscientific
Resumo:
We use interferometric synthetic aperture radar observations recorded in a land-terminating sector of western Greenland to characterise the ice sheet surface hydrology and to quantify spatial variations in the seasonality of ice sheet flow. Our data reveal a non-uniform pattern of late-summer ice speedup that, in places, extends over 100 km inland. We show that the degree of late-summer speedup is positively correlated with modelled runoff within the 10 glacier catchments of our survey, and that the pattern of late-summer speedup follows that of water routed at the ice sheet surface. In late-summer, ice within the largest catchment flows on average 48% faster than during winter, whereas changes in smaller catchments are less pronounced. Our observations show that the routing of seasonal runoff at the ice sheet surface plays an important role in shaping the magnitude and extent of seasonal ice sheet speedup.
Resumo:
Massive discharges of freshwater from the glacial lake Missoula to the northeast Pacific Ocean are thought to have sculpted the Channeled Scablands of eastern Washington and debouched via the Columbia River near 46°N. The dynamics and timing of these events and their impact on northeast Pacific circulation remain uncertain. Here we date marine records of anomalous freshwater inputs to the ocean based on freshwater diatoms, oxygen isotopes in foraminifera, and radiocarbon data. Low-salinity plumes from the Columbia River reduced sea-surface salinities by as much as 6 psu (practical salinity units) more than 400 km away between 16 and 31 cal (calendar) ka B.P. Anomalously high abundances of freshwater diatoms in marine sediments from the region precede generally accepted dates for the existence of glacial Lake Missoula, implying that large flooding or freshwater routing events were common during the advance of the Cordilleran Ice Sheet and that such events require multiple sources.
Resumo:
North American freshwater runoff records have been used to support the case that climate flickers were caused by shutdowns of the ocean thermohaline circulation (THC) resulting from reversals of meltwater discharges. Inconsistencies in the documentation of these meltwater switches, however, continue to fuel the debate on the cause/s of the oscillatory nature of the deglacial climate. New oxygen and carbon isotope records from the northern Gulf of Mexico depict in exceptional detail the succession of meltwater floods and pauses through the southern routing during the interval 16 to 8.9 ka (14C years BP; ka, kiloannum). The records underscore the bimodal role played by the Gulf of Mexico as a destination of meltwater discharges from the receding Laurentide Ice Sheet. The evidence indicates that the Gulf of Mexico acted as the principal source of superfloods at 13.4, 12.6, and 11.9 ka that reached the North Atlantic and contributed significantly to density stratification, disruption of ocean ventilation, and cold reversals. Gulf of Mexico lapsed into a "relief valve" position in post-Younger Dryas time, when meltwater discharges were rerouted south at 9.9, 9.7, 9.4, and 9.1 ka, thus temporarily interrupting North Atlantic-bound freshwater discharges from Lake Agassiz. The history of meltwater events in the Gulf of Mexico contradicts the model that meltwater flow via the eastern outlets into the North Atlantic disrupted the ocean THC, causing cooling, while diversions to the Gulf of Mexico via the Mississippi River enhanced THC and warming.
Resumo:
Coring during Integrated Ocean Drilling Program Expeditions 315, 316, and 333 recovered turbiditic sands from the forearc Kumano Basin (Site C0002), a Quaternary slope basin (Site C0018), and uplifted trench wedge (Site C0006) along the Kumano Transect of the Nankai Trough accretionary wedge offshore of southwest Japan. The compositions of the submarine turbiditic sands here are investigated in terms of bulk and heavy mineral modal compositions to identify their provenance and dispersal mechanisms, as they may reflect changes in regional tectonics during the past ca. 1.5 Myrs. The results show a marked change in the detrital signature and heavy mineral composition in the forearc and slope basin facies around 1 Ma. This sudden change is interpreted to reflect a major change in the sand provenance, rather than heavy mineral dissolution and/or diagenetic effects, in response to changing tectonics and sedimentation patterns. In the trench-slope basin, the sands older than 1 Ma were probably eroded from the exposed Cretaceous-Tertiary accretionary complex of the Shimanto Belt and transported via the former course of the Tenryu submarine canyon system, which today enters the Nankai Trough northeast of the study area. In contrast, the high abundance of volcanic lithics and volcanic heavy mineral suites of the sands younger than 1 Ma points to a strong volcanic component of sediment derived from the Izu-Honshu collision zones and probably funnelled to this site through the Suruga Canyon. However, sands in the forearc basin show persistent presence of blue sodic amphiboles across the 1 Ma boundary, indicating continuous flux of sediments from the Kumano/Kinokawa River. This implies that the sands in the older turbidites were transported by transverse flow down the slope. The slope basin facies then switched to reflect longitudinal flow around 1 Ma, when the turbiditic sand tapped a volcanic provenance in the Izu-Honshu collision zone, while the sediments transported transversely became confined in the Kumano Basin. Therefore, the change in the depositional systems around 1 Ma is a manifestation of the decoupling of the sediment routing pattern from transverse to long-distance axial flow in response to forearc high uplift along the megasplay fault.