7 resultados para Multi-relational data mining
em Publishing Network for Geoscientific
Resumo:
This paper presents the results of a Secchi depth data mining study for the North Sea - Baltic Sea region. 40,829 measurements of Secchi depth were compiled from the area as a result of this study. 4.3% of the observations were found in the international data centers [ICES Oceanographic Data Center in Denmark and the World Ocean Data Center A (WDC-A) in the USA], while 95.7% of the data was provided by individuals and ocean research institutions from the surrounding North Sea and Baltic Sea countries. Inquiries made at the World Ocean Data Center B (WDC-B) in Russia suggested that there could be significant additional holdings in that archive but, unfortunately, no data could be made available. The earliest Secchi depth measurement retrieved in this study dates back to 1902 for the Baltic Sea, while the bulk of the measurements were gathered after 1970. The spatial distribution of Secchi depth measurements in the North Sea is very uneven with surprisingly large sampling gaps in the Western North Sea. Quarterly and annual Secchi depth maps with a 0.5° x 0.5° spatial resolution are provided for the transition area between the North Sea and the Baltic Sea (4°E-16°E, 53°N-60°N).
Resumo:
The first 1400-year floating varve chronology for north-eastern Germany covering the late Allerød to the early Holocene has been established by microscopic varve counts from the Rehwiese palaeolake sediment record. The Laacher See Tephra (LST), at the base of the studied interval, forms the tephrochronological anchor point. The fine laminations were examined using a combination of micro-facies and ?-XRF analyses and are typical of calcite varves, which in this case provide mainly a warm season signal. Two varve types with different sub-layer structures have been distinguished: (I) complex varves consisting of up to four seasonal sub-layers formed during the Allerød and early Holocene periods, and, (II) simple two sub-layer type varves only occurring during the Younger Dryas. The precision of the chronology has been improved by varve-to-varve comparison of two independently analyzed sediment profiles based on well-defined micro-marker layers. This has enabled both (1) the precise location of single missing varves in one of the sediment profiles, and, (2) the verification of varve interpolation in disturbed varve intervals in the parallel core. Inter-annual and decadal-scale variability in sediment deposition processes were traced by multi-proxy data series including seasonal layer thickness, high-resolution element scans and total organic and inorganic carbon data at a five-varve resolution. These data support the idea of a two-phase Younger Dryas, with the first interval (12,675 - 12,275 varve years BP) characterised by a still significant but gradually decreasing warm-season calcite precipitation and a second phase (12,275 - 11,640 varve years BP) with only weak calcite precipitation. Detailed correlation of these two phases with the Meerfelder Maar record based on the LST isochrone and independent varve counts provides clues about regional differences and seasonal aspects of YD climate change along a transect from a location proximal to the North Atlantic in the west to a more continental site in the east.
Resumo:
Providing accurate maps of coral reefs where the spatial scale and labels of the mapped features correspond to map units appropriate for examining biological and geomorphic structures and processes is a major challenge for remote sensing. The objective of this work is to assess the accuracy and relevance of the process used to derive geomorphic zone and benthic community zone maps for three western Pacific coral reefs produced from multi-scale, object-based image analysis (OBIA) of high-spatial-resolution multi-spectral images, guided by field survey data. Three Quickbird-2 multi-spectral data sets from reefs in Australia, Palau and Fiji and georeferenced field photographs were used in a multi-scale segmentation and object-based image classification to map geomorphic zones and benthic community zones. A per-pixel approach was also tested for mapping benthic community zones. Validation of the maps and comparison to past approaches indicated the multi-scale OBIA process enabled field data, operator field experience and a conceptual hierarchical model of the coral reef environment to be linked to provide output maps at geomorphic zone and benthic community scales on coral reefs. The OBIA mapping accuracies were comparable with previously published work using other methods; however, the classes mapped were matched to a predetermined set of features on the reef.
Resumo:
SST variability within the Atlantic cold tongue (ACT) region is of climatic relevance for the surrounding continents. A multi cruise data set of microstructure observations is used to infer regional as well as seasonal variability of upper ocean mixing and diapycnal heat flux within the ACT region. The variability in mixing intensity is related to the variability in large scale background conditions, which were additionally observed during the cruises. The observations indicate fundamental differences in background conditions in terms of shear and stratification below the mixed layer (ML) for the western and eastern equatorial ACT region causing critical Froude numbers (Fr) to be more frequently observed in the western equatorial ACT. The distribution of critical Fr occurrence below the ML reflects the regional and seasonal variability of mixing intensity. Turbulent dissipation rates (?) at the equator (2°N-2°S) are strongly increased in the upper thermocline compared to off-equatorial locations. In addition, ? is elevated in the western equatorial ACT compared to the east from May to November, whereas boreal summer appears as the season of highest mixing intensities throughout the equatorial ACT region, coinciding with ACT development. Diapycnal heat fluxes at the base of the ML in the western equatorial ACT region inferred from ? and stratification range from a maximum of 90 Wm-2 in boreal summer to 55 Wm-2 in September and 40 Wm-2 in November. In the eastern equatorial ACT region maximum values of about 25 Wm-2 were estimated during boreal summer reducing to about 5 Wm-2 towards the end of the year. Outside the equatorial region, inferred diapycnal heat fluxes are comparably low rarely exceeding 10 Wm-2. Integrating the obtained heat flux estimates in the ML heat budget at 10°W on the equator accentuates the diapycnal heat flux as the largest ML cooling term during boreal summer and early autumn. In the western equatorial ACT elevated meridional velocity shear in the upper thermocline contributes to the enhanced diapycnal heat flux within this region during boreal summer and autumn. The elevated meridional velocity shear appears to be associated with intra-seasonal wave activity.
Resumo:
During the SINOPS project, an optimal state of the art simulation of the marine silicon cycle is attempted employing a biogeochemical ocean general circulation model (BOGCM) through three particular time steps relevant for global (paleo-) climate. In order to tune the model optimally, results of the simulations are compared to a comprehensive data set of 'real' observations. SINOPS' scientific data management ensures that data structure becomes homogeneous throughout the project. Practical work routine comprises systematic progress from data acquisition, through preparation, processing, quality check and archiving, up to the presentation of data to the scientific community. Meta-information and analytical data are mapped by an n-dimensional catalogue in order to itemize the analytical value and to serve as an unambiguous identifier. In practice, data management is carried out by means of the online-accessible information system PANGAEA, which offers a tool set comprising a data warehouse, Graphical Information System (GIS), 2-D plot, cross-section plot, etc. and whose multidimensional data model promotes scientific data mining. Besides scientific and technical aspects, this alliance between scientific project team and data management crew serves to integrate the participants and allows them to gain mutual respect and appreciation.