399 resultados para Multi-channel access
em Publishing Network for Geoscientific
Resumo:
Multi-channel ground-penetrating radar is used to investigate the late-summer evolution of the thaw depth and the average soil water content of the thawed active layer at a high-arctic continuous permafrost site on Svalbard, Norway. Between mid of August and mid of September 2008, five surveys have been conducted over transect lengths of 130 and 175 m each. The maximum thaw depths range from 1.6 m to 2.0 m, so that they are among the deepest thaw depths recorded for Svalbard so far. The thaw depths increase by approximately 0.2 m between mid of August and beginning of September and subsequently remain constant until mid of September. The thaw rates are approximately constant over the entire length of the transects within the measurement accuracy of about 5 to 10 cm. The average volumetric soil water content of the thawed soil varies between 0.18 and 0.27 along the investigated transects. While the measurements do not show significant changes in soil water content over the first four weeks of the study, strong precipitation causes an increase in average soil water content of up to 0.04 during the last week. These values are in good agreement with evapotranspiration and precipitation rates measured in the vicinity of the the study site. While we cannot provide conclusive reasons for the detected spatial variability of the thaw depth at the study site, our measurements show that thaw depth and average soil water content are not directly correlated. The study demonstrates the potential of multi-channel ground-penetrating radar for mapping thaw depth in permafrost areas. The novel non-invasive technique is particularly useful when the thaw depth exceeds 1.5 m, so that it is hardly accessible by manual probing. In addition, multi-channel ground-penetrating radar holds potential for mapping the latent heat content of the active layer and for estimating weekly to monthly averages of the ground heat flux during the thaw period.
Resumo:
This paper reports results of an investigation of a representative collection of samples recovered by deep-sea drilling from the oceanic basement 10 miles west of the rift valley axis in the crest zone of the Mid- Atlantic Ridge at 15°44'N (Sites 1275B and 1275D). Drilling operations were carried out during Leg 209 of the Drilling Vessel JOIDES Resolution within the framework of the Ocean Drilling Program (ODP). The oceanic crust was penetrated to depth of 108.7 m at Site 1275B and 209 m at Site 1275D. We reconstructed the following sequence of magmatic and metamorphic events resulting in the formation of a typical oceanic core complex of slow-spreading ridges: (1) formation of strongly fractionated (enriched in iron and titanium) tholeiitic magmatic melt parental to gabbroids under investigation in a large magma chamber located in a shallow mantle and operating for a long time under steady-state conditions; (2) transfer of the parental magmatic melt of the gabbroids to the base of the oceanic crust, its interaction with host mantle peridotites, and formation of troctolites and plagioclase peridotites; (3) intrusion of enriched trondhjemite melts as veins and dikes in the early formed plutonic complex, contact recrystallization of the gabbro, and development in the peridotite-gabbro complex of enriched geochemical signatures owing to influence of trondhjemite injections; (4) emplacement of dolerite dikes (transformed to diabases); (5) metamorphism of upper epidoteamphibolite facies with participation of marine fluids; and (6) rapid exhumation of the plutonic complex to the seafloor accompanied by greenschist-facies metamorphism. Distribution patterns of Sr and Nd isotopes and strongly incompatible elements in the rocks suggest contributions from two melt sources to the magmatic evolution of the MAR crest at 15°44'N: a depleted reservoir responsible for formation of the gabbros and diabases and an enriched reservoir, from which trondhjemites (granophyres) were derived.
Resumo:
Adult male and female Weddell seals (Leptonychotes weddellii) were fitted with Time-depth recorders (TDR) at Drescher Inlet (Riiser Larsen Ice Shelf), eastern Weddell Sea coast, in February 1998. Eight of 15 data sets were selected for analyses to investigate the seals' foraging behaviour (doi:10.1594/PANGAEA.511465, doi:10.1594/PANGAEA.511454, doi:10.1594/PANGAEA.511456, doi:10.1594/PANGAEA.511457, doi:10.1594/PANGAEA.511459, doi:10.1594/PANGAEA.511462, doi:10.1594/PANGAEA.511466, doi:10.1594/PANGAEA.511467). These data sets provided simultaneous dive records of eight seals over eight days. The seals primarily foraged within two depth layers, these being from the sea surface to 160 m where temperature and salinity varied considerably, and from 340 to 450 m near the bottom where temperature was lowest and salinity highest, with little variation. While pelagic and benthic diving occurred during daylight, the seals foraged almost exclusively in the upper water column at night. Trawling during daytime confirmed that Pleuragramma antarcticum were by far the most abundant fish both in the pelagial and close to the bottom. Pelagic night-hauls at 110-170 m depth showed highly variable biomass of P. antarcticum with a peak at around midnight. The temporal changes in the local abundance of P. antarcticum, particularly in the pelagial, may explain the trends in the seals' pelagic and benthic foraging activities. This is the first study which describes the jaw movements of a hunting seal which are presumably indicative of feeding events. Trophic links from the Weddell seal to fish, zooplankton and krill, Euphausia superba, are discussed. Another seven data sets did not overlap substantially with the selected time frame (doi:10.1594/PANGAEA.511458, doi:10.1594/PANGAEA.511460, doi:10.1594/PANGAEA.511464, doi:10.1594/PANGAEA.511468, doi:10.1594/PANGAEA.511469, doi:10.1594/PANGAEA.511453, doi:10.1594/PANGAEA.511463). A total of 25 Weddell seals were immobilised during the study period using a combination of ketamine, xylazine, and diazepam. Seven seals were drugged once, 15 seals two times, and three were drugged three times, coming to a total of 46 immobilisation procedures. Narcoses were terminated with yohimbine (doi:10.1594/PANGAEA.438933).
Resumo:
Respiration and ammonium excretion rates at different oxygen partial pressure were measured for calanoid copepods and euphausiids from the Eastern Tropical South Pacific and the Eastern Tropical North Atlantic. All specimens used for experiments were caught in the upper 400 m of the water column and only animals appearing unharmed and fit were used for experiments. Specimens were sorted, identified and transferred into aquaria with filtered, well-oxygenated seawater immediately after the catch and maintained for 1 to 13 hours prior to physiological experiments at the respective experimental temperature. Maintenance and physiological experiments were conducted in darkness in temperature-controlled incubators at 11, 13 or 23 degree C (±1). Before and during experiments, animals were not fed. Respiration and ammonium excretion rate measurements (both in µmol h-1 gDW-1) at varying oxygen concentrations were conducted in 12 to 60 mL gas-tight glass bottles. These were equipped with oxygen microsensors (ø 3 mm, PreSens Precision Sensing GmbH, Regensburg, Germany) attached to the inner wall of the bottles to monitor oxygen concentrations non-invasively. Read-out of oxygen concentrations was conducted using multi-channel fiber optic oxygen transmitters (Oxy-4 and Oxy-10 mini, PreSens Precision Sensing GmbH, Regensburg, Germany) that were connected via optical fibers to the outside of the bottles directly above the oxygen microsensor spots. Measurements were started at pre-adjusted oxygen and carbon dioxide levels. For this, seawater stocks with adjusted pO2 and pCO2 were prepared by equilibrating 3 to 4 L of filtered (0.2 µm filter Whatman GFF filter) and UV - sterilized (Aqua Cristal UV C 5 Watt, JBL GmbH & Co. KG, Neuhofen, Germany) water with premixed gases (certified gas mixtures from Air Liquide) for 4 hours at the respective experimental temperature. pCO2 levels were chosen to mimic the environmental pCO2 in the ETSP OMZ or the ETNA OMZ. Experimental runs were conducted with 11 to 15 trial incubations (1 or 2 animals per incubation bottle and three different treatment levels) and three animal-free control incubations (one per experimental treatment). During each run, experimental treatments comprised 100% air saturation as well as one reduced air saturation level with and without CO2. Oxygen concentrations in the incubation bottles were recorded every 5 min using the fiber-optic microsensor system and data recording for respiration rate determination was started immediately after all animals were transferred. Respiration rates were calculated from the slope of oxygen decrease over selected time intervals. Chosen time intervals were 20 to 105 min long. No respiration rate was calculated for the first 20 to 60 min after animal transfer to avoid the impact of enhanced activity of the animal or changes in the bottle water temperature during initial handling on the respiration rates and oxygen readings. Respiration rates were obtained over a maximum of 16 hours incubation time and slopes were linear at normoxia to mild hypoxia. Respiration rates in animal-free control bottles were used to correct for microbial activity. These rates were < 2% of animal respiration rates at normoxia. Samples for the measurement of ammonium concentrations were taken after 2 to 10 hours incubation time. Ammonium concentration was determined fluorimetrically (Holmes et al., 1999). Ammonium excretion was calculated as the concentration difference between incubation and animal-free control bottles. Some specimens died during the respiration and excretion rate measurements, as indicated by a cessation of respiration. No excretion rate measurements were conducted in this case, but the oxygen level at which the animal died was noted.
Resumo:
A multi-proxy chronological framework along with sequence-stratigraphic interpretations unveils composite Milankovitch cyclicity in the sedimentary records of the Last GlacialeInterglacial cycle at NE Gela Basin on the Sicilian continental margin. Chronostratigraphic data (including foraminifera-based eco-biostratigraphy and d18O records, tephrochronological markers and 14C AMS radiometric datings) was derived from the shallow-shelf drill sites GeoB14403 (54.6 m recovery) and GeoB14414 (27.5 m), collected with both gravity and drilled MeBo cores in 193 m and 146 m water depth, respectively. The recovered intervals record Marine Isotope Stages and Substages (MIS) from MIS 5 to MIS 1, thus comprising major stratigraphic parts of the progradational deposits that form the last 100-ka depositional sequence. Calibration of shelf sedimentary units with borehole stratigraphies indicates the impact of higher-frequency (20-ka) sea level cycles punctuating this 100-ka cycle. This becomes most evident in the alternation of thick interstadial highstand (HST) wedges and thinner glacial forced-regression (FSST) units mirroring seaward shifts in coastal progradation. Albeit their relatively short-lived depositional phase, these subordinate HST units form the bulk of the 100-ka depositional sequence. Two mechanisms are proposed that likely account for enhanced sediment accumulation ratios (SAR) of up to 200 cm/ka during these intervals: (1) intensified activity of deep and intermediate Levantine Intermediate Water (LIW) associated to the drowning of Mediterranean shelves, and (2) amplified sediment flux along the flooded shelf in response to hyperpycnal plumes that generate through extreme precipitation events during overall arid conditions. Equally, the latter mechanism is thought to be at the origin of undulated features resolved in the acoustic records of MIS 5 Interstadials, which bear a striking resemblance to modern equivalents forming on late-Holocene prodeltas of other Mediterranean shallow-shelf settings.
Resumo:
Substantial retreat or disintegration of numerous ice shelves have been observed on the Antarctic Peninsula. The ice shelf in the Prince Gustav Channel retreated gradually since the late 1980's and broke-up in 1995. Tributary glaciers reacted with speed-up, surface lowering and increased ice discharge, consequently contributing to sea level rise. We present a detailed long-term study (1993-2014) on the dynamic response of Sjögren Inlet glaciers to the disintegration of Prince Gustav Ice Shelf. We analyzed various remote sensing datasets to observe the reactions of the glaciers to the loss of the buttressing ice shelf. A strong increase in ice surface velocities was observed with maximum flow speeds reaching 2.82±0.48 m/d in 2007 and 1.50±0.32 m/d in 2004 at Sjögren and Boydell glaciers respectively. Subsequently, the flow velocities decelerated, however in late 2014, we still measured about two times the values of our first measurements in 1996. The tributary glaciers retreated 61.7±3.1 km² behind the former grounding line of the ice shelf. In regions below 1000 m a.s.l., a mean surface lowering of -68±10 m (-3.1 m/a) was observed in the period 1993-2014. The lowering rate decreased to -2.2 m/a in recent years. Based on the surface lowering rates, geodetic mass balances of the glaciers were derived for different time steps. High mass loss rate of -1.21±0.36 Gt/a was found in the earliest period (1993-2001). Due to the dynamic adjustments of the glaciers to the new boundary conditions the ice mass loss reduced to -0.59±0.11 Gt/a in the period 2012-2014, resulting in an average mass loss rate of -0.89±0.16 Gt/a (1993-2014). Including the retreat of the ice front and grounding line, a total mass change of -38.5±7.7 Gt and a contribution to sea level rise of 0.061±0.013 mm were computed. Analysis of the ice flux revealed that available bedrock elevation estimates at Sjögren Inlet are too shallow and are the major uncertainty in ice flux computations. This temporally dense time series analysis of Sjögren Inlet glaciers shows that the adjustments of tributary glaciers to ice shelf disintegration are still going on and provides detailed information of the changes in glacier dynamics.