30 resultados para Multi-Exposure Plate Images Processing

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the qualitative description of surface properties like vegetation cover or land-water-ratio of Samoylov Island as well as for the evaluation of fetch homogeneity considerations of the eddy covariance measurements and for the up-scaling of chamber flux measurements, a detailed surface classification of the island at the sub-polygonal scale is necessary. However, up to know only grey-scale Corona satellite images from the 1960s with a resolution of 2 x 2 m and recent multi-spectral LandSat images with a resolution of 30 x 30 m were available for this region. Both are not useable for the desired classification because of missing spectral information and inadequate resolution, respectively. During the Lena 2003 expedition, a survey of the island by air photography was carried out in order to obtain images for surface classification. The photographs were taken from a helicopter on 10.07.2002, using a Canon EOS100 reflex camera, a Soligor 19-23 mm lens and colour slide film. The height from which the photographs were taken was approximately 600 meters. Due to limited flight time, not all the area of the island could be photographed and some regions could only be photographed with a slanted view. As a result, the images are of a varying quality and resolution. In Potsdam, after processing the films were scanned using a Nikon LS-2000 scanner at maximal resolution setting. This resulted in a ground resolution of the scanned images of approximately 0.3x0.3 m. The images were subsequently geo-referenced using the ENVI software and a referenced Corona image dating from 18.07.1964 (Spott, 2003). Geo-referencing was only possible for the Holocene river terrace areas; the floodplain regions in the western part of the island could not be referenced due to the lack of ground reference points. In Figure 3.7-1, the aerial view of Samoylov Island composed of the geo-referenced images is shown. Further work is necessary for the classification and interpretation of the images. If possible, air photography surveys will be carried out during future expeditions in order to determine changes in surface pattern and composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes of glaciers and snow cover in polar regions affect a wide range of physical and ecosystem processes on land and in the adjacent marine environment. In this study, we investigate the potential of 11-day repeat high-resolution satellite image time series from the TerraSAR-X mission to derive glaciological and hydrological parameters on King George Island, Antarctica during the period Oct/25/2010 to Apr/19/2011. The spatial pattern and temporal evolution of snow cover extent on ice-free areas can be monitored using multi-temporal coherence images. SAR coherence is used to map glacier extent of land terminating glaciers with an average accuracy of 25 m. Multi-temporal SAR color composites identify the position of the late summer snow line at about 220 m above sea level. Glacier surface velocities are obtained from intensity feature-tracking. Surface velocities near the calving front of Fourcade Glacier were up to 1.8 ± 0.01 m/d. Using an intercept theorem based on fundamental geometric principles together with differential GPS field measurements, the ice discharge of Fourcade Glacier was estimated to 20700 ± 5500 m**3/d (corresponding to ~19 ± 5 kt/d). The rapidly changing surface conditions on King George Island and the lack of high-resolution digital elevation models for the region remain restrictions for the applicability of SAR data and the precision of derived products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thick oceanic crust of the Caribbean plate appears to be the tectonized remnant of an eastern Pacific oceanic plateau that has been inserted between North and South America. The emplacement of the plateau into its present position has resulted in the obduction and exposure of its margins, providing an opportunity to study the age relations, internal structure and compositional features of the plateau. We present the results of 40Ar-39Ar radiometric dating, major-, trace-element, and isotopic compositions of basalts from some of the exposed sections as well as drill core basalt samples from Leg 15 of the Deep Sea Drilling Project. Five widely spaced, margin sections yielded ages ranging from 91 to 88 Ma. Less well-constrained radiometric ages from the drill cores, combined with the biostratigraphic age of surrounding sediments indicate a minimum crystallization age of ~90 Ma in the Venezuelan Basin. The synchroneity of ages across the region is consistent with a flood basalt origin for the bulk of the Caribbean plateau i.e., large volume, rapidly erupted, regionally extensive volcanism.. The ages and compositions are also consistent with plate reconstructions that place the Caribbean plateau in the vicinity of the Galápagos hotspot at its inception. The trace-element and isotopic compositions of the ~90 Ma rocks indicate a depleted mantle and an enriched, plume-like mantle were involved in melting to varying degrees across the plateau. Within the same region, a volumetrically secondary, but widespread magmatic event occurred at 76 Ma, as is evident in Curacao, western Colombia, Haiti, and at DSDP Site 152/ODP Site 1001 near the Hess Escarpment. Limited trace-element data indicate that this phase of magmatism was generally more depleted than the first. We speculate that magmatism may have resulted from upwelling of mantle, still hot from the 90 Ma event, during lithospheric extension attending gravitational collapse of the plateau, andror tectonic emplacement of the plateau between North and South America. Still younger volcanics are found in the Dominican Republic (69 Ma) and the Quepos Peninsula of Costa Rica (63 Ma). The latter occurrence conceivably formed over the Galápagos hotspot and subsequently accreted to the western edge of the plateau during subduction of the Farallon plate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conceptualization of groundwater flow systems is necessary for water resources planning. Geophysical, hydrochemical and isotopic characterization methods were used to investigate the groundwater flow system of a multi-layer fractured sedimentary aquifer along the coastline in Southwestern Nicaragua. A geologic survey was performed along the 46 km2 catchment. Electrical resistivity tomography (ERT) was applied along a 4.4 km transect parallel to the main river channel to identify fractures and determine aquifer geometry. Additionally, three cross sections in the lower catchment and two in hillslopes of the upper part of the catchment were surveyed using ERT. Stable water isotopes, chloride and silica were analyzed for springs, river, wells and piezometers samples during the dry and wet season of 2012. Indication of moisture recycling was found although the identification of the source areas needs further investigation. The upper-middle catchment area is formed by fractured shale/limestone on top of compact sandstone. The lower catchment area is comprised of an alluvial unit of about 15 m thickness overlaying a fractured shale unit. Two major groundwater flow systems were identified: one deep in the shale unit, recharged in the upper-middle catchment area; and one shallow, flowing in the alluvium unit and recharged locally in the lower catchment area. Recharged precipitation displaces older groundwater along the catchment, in a piston flow mechanism. Geophysical methods in combination with hydrochemical and isotopic tracers provide information over different scales and resolutions, which allow an integrated analysis of groundwater flow systems. This approach provides integrated surface and subsurface information where remoteness, accessibility, and costs prohibit installation of groundwater monitoring networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial and temporal dynamics of seagrasses have been studied from the leaf to patch (100 m**2) scales. However, landscape scale (> 100 km**2) seagrass population dynamics are unresolved in seagrass ecology. Previous remote sensing approaches have lacked the temporal or spatial resolution, or ecologically appropriate mapping, to fully address this issue. This paper presents a robust, semi-automated object-based image analysis approach for mapping dominant seagrass species, percentage cover and above ground biomass using a time series of field data and coincident high spatial resolution satellite imagery. The study area was a 142 km**2 shallow, clear water seagrass habitat (the Eastern Banks, Moreton Bay, Australia). Nine data sets acquired between 2004 and 2013 were used to create seagrass species and percentage cover maps through the integration of seagrass photo transect field data, and atmospherically and geometrically corrected high spatial resolution satellite image data (WorldView-2, IKONOS and Quickbird-2) using an object based image analysis approach. Biomass maps were derived using empirical models trained with in-situ above ground biomass data per seagrass species. Maps and summary plots identified inter- and intra-annual variation of seagrass species composition, percentage cover level and above ground biomass. The methods provide a rigorous approach for field and image data collection and pre-processing, a semi-automated approach to extract seagrass species and cover maps and assess accuracy, and the subsequent empirical modelling of seagrass biomass. The resultant maps provide a fundamental data set for understanding landscape scale seagrass dynamics in a shallow water environment. Our findings provide proof of concept for the use of time-series analysis of remotely sensed seagrass products for use in seagrass ecology and management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Providing accurate maps of coral reefs where the spatial scale and labels of the mapped features correspond to map units appropriate for examining biological and geomorphic structures and processes is a major challenge for remote sensing. The objective of this work is to assess the accuracy and relevance of the process used to derive geomorphic zone and benthic community zone maps for three western Pacific coral reefs produced from multi-scale, object-based image analysis (OBIA) of high-spatial-resolution multi-spectral images, guided by field survey data. Three Quickbird-2 multi-spectral data sets from reefs in Australia, Palau and Fiji and georeferenced field photographs were used in a multi-scale segmentation and object-based image classification to map geomorphic zones and benthic community zones. A per-pixel approach was also tested for mapping benthic community zones. Validation of the maps and comparison to past approaches indicated the multi-scale OBIA process enabled field data, operator field experience and a conceptual hierarchical model of the coral reef environment to be linked to provide output maps at geomorphic zone and benthic community scales on coral reefs. The OBIA mapping accuracies were comparable with previously published work using other methods; however, the classes mapped were matched to a predetermined set of features on the reef.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador: