2 resultados para Multi-Attribute Rating Technique
em Publishing Network for Geoscientific
Resumo:
Climate change, including ocean acidification (OA), presents fundamental challenges to marine biodiversity and sustained ecosystem health. We determined reproductive response (measured as naupliar production), cuticle composition and stage specific growth of the copepod Tisbe battagliai over three generations at four pH conditions (pH 7.67, 7.82, 7.95, and 8.06). Naupliar production increased significantly at pH 7.95 compared with pH 8.06 followed by a decline at pH 7.82. Naupliar production at pH 7.67 was higher than pH 7.82. We attribute the increase at pH 7.95 to an initial stress response which was succeeded by a hormesis-like response at pH 7.67. A multi-generational modelling approach predicted a gradual decline in naupliar production over the next 100 years (equivalent to approximately 2430 generations). There was a significant growth reduction (mean length integrated across developmental stage) relative to controls. There was a significant increase in the proportion of carbon relative to oxygen within the cuticle as seawater pH decreased. Changes in growth, cuticle composition and naupliar production strongly suggest that copepods subjected to OA-induced stress preferentially reallocate resources towards maintaining reproductive output at the expense of somatic growth and cuticle composition. These responses may drive shifts in life history strategies that favour smaller brood sizes, females and perhaps later maturing females, with the potential to profoundly destabilise marine trophodynamics.
Resumo:
Multi-channel ground-penetrating radar is used to investigate the late-summer evolution of the thaw depth and the average soil water content of the thawed active layer at a high-arctic continuous permafrost site on Svalbard, Norway. Between mid of August and mid of September 2008, five surveys have been conducted over transect lengths of 130 and 175 m each. The maximum thaw depths range from 1.6 m to 2.0 m, so that they are among the deepest thaw depths recorded for Svalbard so far. The thaw depths increase by approximately 0.2 m between mid of August and beginning of September and subsequently remain constant until mid of September. The thaw rates are approximately constant over the entire length of the transects within the measurement accuracy of about 5 to 10 cm. The average volumetric soil water content of the thawed soil varies between 0.18 and 0.27 along the investigated transects. While the measurements do not show significant changes in soil water content over the first four weeks of the study, strong precipitation causes an increase in average soil water content of up to 0.04 during the last week. These values are in good agreement with evapotranspiration and precipitation rates measured in the vicinity of the the study site. While we cannot provide conclusive reasons for the detected spatial variability of the thaw depth at the study site, our measurements show that thaw depth and average soil water content are not directly correlated. The study demonstrates the potential of multi-channel ground-penetrating radar for mapping thaw depth in permafrost areas. The novel non-invasive technique is particularly useful when the thaw depth exceeds 1.5 m, so that it is hardly accessible by manual probing. In addition, multi-channel ground-penetrating radar holds potential for mapping the latent heat content of the active layer and for estimating weekly to monthly averages of the ground heat flux during the thaw period.