8 resultados para Monetary exchange rate model

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper assesses the impact of climate change on China's agricultural production at a cross-provincial level using the Ricardian approach, incorporating a multilevel model with farm-level group data. The farm-level group data includes 13379 farm households, across 316 villages, distributed in 31 provinces. The empirical results show that, firstly, the marginal effects and elasticities of net crop revenue per hectare with respect to climate factors indicated that the annual impact of temperature on net crop revenue per hectare was positive, and the effect of increased precipitation was negative when looking at the national totals; secondly, the total impact of simulated climate change scenarios on net crop revenues per hectare at a Chinese national total level, was an increase of between 79 USD per hectare and 207 USD per hectare for the 2050s, and an increase from 140 USD per hectare to 355 USD per hectare for the 2080s. As a result, climate change may create a potential advantage for the development of Chinese agriculture, rather than a risk, especially for agriculture in the provinces of the Northeast, Northwest and North regions. However, the increased precipitation can lead to a loss of net crop revenue per hectare, especially for the provinces of the Southwest, Northwest, North and Northeast regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical model which describes oxygen isotope exchange during burial and recrystallization of deep-sea carbonate is used to obtain information on how sea surface temperatures have varied in the past by correcting measured d18O values of bulk carbonate for diagenetic overprinting. Comparison of bulk carbonate and planktonic foraminiferal d18O records from ODP site 677A indicates that the oxygen isotopic composition of bulk carbonate does reflect changes in sea surface temperature and d18O. At ODP Site 690, we calculate that diagenetic effects are small, and that both bulk carbonate and planktonic foraminiferal d18O records accurately reflect Paleogene warming of high latitude surface oceans, biased from diagenesis by no more than 1°C. The same is likely to be true for other high latitude sites where sedimentation rates are low. At DSDP sites 516 and 525, the effects of diagenesis are more significant. Measured d18O values of Eocene bulk carbonates are more than 2? lower at deeply buried site 516 than at site 525, consistent with the model prediction that the effects of diagenesis should be proportional to sedimentation rate. Model-corrections reconcile the differences in the data between the two sites; the resulting paleotemperature reconstruction indicates a 4°C cooling of mid-latitude surface oceans since the Eocene. At low latitudes, the contrast in temperature between the ocean surface and bottom makes the carbonate d180 values particularly sensitive to diagenetic effects; most of the observed variations in measured d18O values are accounted for by diagenetic effects rather than by sea surface temperature variations. We show that the data are consistent with constant equatorial sea surface temperatures through most of the Cenozoic, with the possible exception of the early Eocene, when slightly higher temperatures are indicated. We suggest that the lower equatorial sea surface temperatures for the Eocene and Oligocene reported in other oxygen isotope studies are artifacts of diagenetic recrystallization, and that it is impossible to reconstruct accurately equatorial sea surface temperatures without explicitly accounting for diagenetic overprinting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first complete cyclic sedimentary successions for the early Paleogene from drilling multiple holes have been retrieved during two ODP expeditions: Leg 198 (Shatsky Rise, NW Pacific Ocean) and Leg 208 (Walvis Ridge, SE Atlantic Ocean). These new records allow us to construct a comprehensive astronomically calibrated stratigraphic framework with an unprecedented accuracy for both the Atlantic and the Pacific Oceans covering the entire Paleocene epoch based on the identification of the stable long-eccentricity cycle (405-kyr). High resolution X-ray fluorescence (XRF) core scanner and non-destructive core logging data from Sites 1209 through1211 (Leg 198) and Sites 1262, 1267 (Leg 208) are the basis for such a robust chronostratigraphy. Former investigated marine (ODP Sites 1001 and 1051) and land-based (e.g., Zumaia) sections have been integrated as well. The high-fidelity chronology is the prerequisite for deciphering mechanisms in relation to prominent transient climatic events as well as completely new insights into Greenhouse climate variability in the early Paleogene. We demonstrate that the Paleocene epoch covers 24 long eccentricity cycles. We also show that no definite absolute age datums for the K/Pg boundary or the Paleocene - Eocene Thermal Maximum (PETM) can be provided by now, because of still existing uncertainties in orbital solutions and radiometric dating. However, we provide two options for tuning of the Paleocene which are only offset by 405-kyr. Our orbitally calibrated integrated Leg 208 magnetostratigraphy is used to revise the Geomagnetic Polarity Time Scale (GPTS) for Chron C29 to C25. We established a high-resolution calcareous nannofossil biostratigraphy for the South Atlantic which allows a much more detailed relative scaling of stages with biozones. The re-evaluation of the South Atlantic spreading rate model features higher frequent oscillations in spreading rates for magnetochron C28r, C27n, and C26n.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melt rate and surface temperature on the Greenland ice sheet are parameterized in terms of snow accumulation, mean annual air temperatur and mean July air temperature. Melt rates are calculated using positive degree-days, and firn warming (i.e. the positive deviation of the temperature at 10-15 m depth from the mean annual air temperature) is estimated from the calculated amount of refrozen melt water in the firn. A comparison between observed and calculated melt rates shows that the parameterization provides a reasonable estimate of the present ablation rates in West Greenland between 61°N and 76°N. The average equilibrium line elevation is estimated to be about 1150 m and 1000 m for West and East Greenland respectively, which is several hundred meter lower than previous estimates. However, the total annual ablation from the ice sheet is found to be about 280 km**3 of water per year which agrees well with most other estimates. The melt-rate model predicts significant melting and consequently significant firn warming even at the highest elevations of the South Greenland ice sheet, whereas a large region of central Greenland north of 70° N experiences little or no summer melting. This agrees with the distribution of the dry snow facics as given by BENSON (1962).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Stable isotope and faunal records from the central Red Sea show high-amplitude oscillations for the past 380,000 years. Positive delta18O anomalies indicate periods of significant salt buildup during periods of lowered sea level when water mass exchange with the Arabian Sea was reduced due to a reduced geometry of the Bab el Mandeb Strait. Salinities as high as 53 per mil and 55 per mil are inferred from pteropod and benthic foraminifera delta18O, respectively, for the last glacial maximum. During this period all planktonic foraminifera vanished from this part of the Red Sea. Environmental conditions improved rapidly after 13 ka as salinities decreased due to rising sea level. The foraminiferal fauna started to reappear and was fully reestablished between 9 ka and 8 ka. Spectral analysis of the planktonic delta18O record documents highest variance in the orbital eccentricity, obliquity, and precession bands, indicating a dominant influence of climatically - driven sea level change on environmental conditions in the Red Sea. Variance in the precession band is enhanced compared to the global mean marine climate record (SPECMAP), suggesting an additional influence of the Indian monsoon system on Red Sea climates.