6 resultados para Modeling Rapport Using Hidden Markov Models
em Publishing Network for Geoscientific
Resumo:
Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. We present an analogue modeling study using cohesive powder with pre-formed joint sets in the upper layer, varying the angle between joints and a rigid basement fault. We analyze interpreted map-view photographs at maximum displacement for damage zone width, number of connected joints, number of secondary fractures, degree of segmentation and area fraction of massively dilatant fractures. Particle imaging velocimetry helps provide insights on deformation history of the experiments and illustrate the localization pattern of fault segments. Results show that with increasing angle between joint-set and basement-fault strike the number of secondary fractures and the number of connected joints increases, while the area fraction of massively dilatant fractures shows only a minor increase. Models without pre-existing joints show far lower area fractions of massively dilatant fractures while forming distinctly more secondary fractures.
Resumo:
Transient simulations are widely used in studying the past climate as they provide better comparison with any exisiting proxy data. However, multi-millennial transient simulations using coupled climate models are usually computationally very expensive. As a result several acceleration techniques are implemented when using numerical simulations to recreate past climate. In this study, we compare the results from transient simulations of the present and the last interglacial with and without acceleration of the orbital forcing, using the comprehensive coupled climate model CCSM3 (Community Climate System Model 3). Our study shows that in low-latitude regions, the simulation of long-term variations in interglacial surface climate is not significantly affected by the use of the acceleration technique (with an acceleration factor of 10) and hence, large-scale model-data comparison of surface variables is not hampered. However, in high-latitude regions where the surface climate has a direct connection to the deep ocean, e.g. in the Southern Ocean or the Nordic Seas, acceleration-induced biases in sea-surface temperature evolution may occur with potential influence on the dynamics of the overlying atmosphere. The data provided here are from both accelerated and non-accelerated runs as decadal mean values.
Resumo:
Ocean Drilling Program (ODP) Leg 115 post-cruise research was focused on two Maldives sites, more precisely on the top 108 m of Hole 716B (water depth, 540 m), equivalent to the past 3.5 m.y., and the top 19.5 m of Hole 714A (water depth, 2195 m), equivalent to the past 0.55 m.y. These sediments consist of mostly unaltered and undisturbed, turbidite-free, periplatform ooze. Results of our research are compared with existing data on Hole 633A (water depth, 1681 m), drilled in the Bahamas during ODP Leg 101, using age/depth models built on the basis of oxygen isotope, nannofossil, and magnetic stratigraphies. Climate-induced, long-term (roughly 0.5 m.y.) aragonite cycles, superposed on short-term (roughly 0.04 and 0.1 m.y.) aragonite cycles, have been established at least during the past 2.0 m.y., in the Maldives and the Bahamas. Our most interesting result is the clear correlation among the aragonite long-term cycles in the Maldives and the Bahamas and the carbonate-preservation, long-term cycles from the open Pacific, Indian, and North Atlantic oceans. The mid-Brunhes dissolution interval, corresponding to the youngest preservation minima of the carbonate-preservation, longterm cycles, is clearly defined by fine aragonite minimum values in the deep periplatform sites, and by maximum fragmentation of pteropod tests in the shallow sites. Aragonite and planktonic d18O records, usually in phase during the late Pleistocene, display, further back in time, discreet intervals where the two records do not match with one another. Major mismatches between both records occur synchronously in the Maldives and Bahamas periplatform sites and seem to correspond to extreme events of either carbonate-preservation or dissolution in the deep pelagic carbonate sites of the equatorial Pacific Ocean. Based on our findings, short- and long-term aragonite cycles can no longer be explained only by variations of aragonite input from the nearby shallow carbonate banks, in response to their alternate flooding and exposure through cyclic sea-level fluctuations. The aragonite long-term cycles in the periplatform environments are interpreted as carbonatepreservation cycles at intermediate-water depths. Their occurrence shows, therefore, that the carbonate chemistry of the entire water column has been influenced by long-term (0.5 m.y.) cyclic variations during the past 2.0 m.y. These major changes of the water-column carbonate chemistry are linked to the climate-induced carbon cycling among the different atmospheric, oceanic, and sedimentary carbon reservoirs.
Resumo:
Proxy reconstructions of tropical Atlantic sea surface temperature (SST) that extend beyond the period of instrumental observations have primarily focused on centennial to millennial variability rather than on seasonal to multidecadal variability. Here we present monthly-resolved records of Sr/Ca (a proxy of SST) from fossil annually-banded Diploria strigosa corals from Bonaire (southern Caribbean Sea). The individual corals provide time-windows of up to 68 years length, and the total number of 295 years of record allows for assessing the natural range of seasonal to multidecadal SST variability in the western tropical Atlantic during snapshots of the mid- to late Holocene. Comparable to modern climate, the coral Sr/Ca records reveal that mid- to late Holocene SST was characterised by clear seasonal cycles, persistent quasi-biennial and prominent interannual as well as inter- to multidecadal-scale variability. However, the magnitude of SST variations on these timescales has varied over the last 6.2 ka. The coral records show increased seasonality during the mid-Holocene consistent with climate model simulations indicating that southern Caribbean SST seasonality is induced by insolation changes on orbital timescales, whereas internal dynamics of the climate system play an important role on shorter timescales. Interannual SST variability is linked to ocean-atmosphere interactions of Atlantic and Pacific origin. Pronounced interannual variability in the western tropical Atlantic is indicated by a 2.35 ka coral, possibly related to a strengthening of the variability of the El Niño/Southern Oscillation throughout the Holocene. Prominent inter- to multidecadal SST variability is evident in the coral records and slightly more pronounced in the mid-Holocene. We finally argue that our coral data provide a target for studying Holocene climate variability on seasonal and interannual to multidecadal timescales, when using further numerical models and high-resolution proxy data.
Resumo:
Distribution, density, and feeding dynamics of the pelagic tunicate Salpa thompsoni have been investigated during the expedition ANTARKTIS XVIII/5b to the Eastern Bellingshausen Sea on board RV Polarstern in April 2001. This expedition was the German contribution to the field campaign of the Southern Ocean Global Ocean Ecosystems Dynamics Study (SO-GLOBEC). Salps were found at 31% of all RMT-8 and Bongo stations. Their densities in the RMT-8 samples were low and did not exceed 4.8 ind/m**2 and 7.4 mg C/m**2. However, maximum salp densities sampled with the Bongo net reached 56 ind/m**2 and 341 mg C/m**2. A bimodal salp length frequency distribution was recorded over the shelf, and suggested two recent budding events. This was also confirmed by the developmental stage composition of solitary forms. Ingestion rates of aggregate forms increased from 2.8 to 13.9 µg (pig)/ind/day or from 0.25 to 2.38 mg C/ind/day in salps from 10 to 40 mm oral-atrial length, accounting for 25-75% of body carbon per day. Faecal pellet production rates were on average 0.08 pellet/ind/h with a pronounced diel pattern. Daily individual egestion rates in 13 and 30 mm aggregates ranged from 0.6 to 4.8 µg (pig)/day or from 164 to 239 µg C/day. Assimilation efficiency ranged from 73 to 90% and from 65 to 76% in 13 and 30 mm aggregates, respectively. S. thompsoni exhibited similar ingestion and egestion rates previously estimated for low Antarctic (~50°S) habitats. It has been suggested that the salp population was able to develop in the Eastern Bellingshausen Sea due to an intrusion into the area of the warm Upper Circumpolar Deep Water