5 resultados para Model selection
em Publishing Network for Geoscientific
Resumo:
Secchi depth is a measure of water transparency. In the Baltic Sea region, Secchi depth maps are used to assess eutrophication and as input for habitat models. Due to their spatial and temporal coverage, satellite data would be the most suitable data source for such maps. But the Baltic Sea's optical properties are so different from the open ocean that globally calibrated standard models suffer from large errors. Regional predictive models that take the Baltic Sea's special optical properties into account are thus needed. This paper tests how accurately generalized linear models (GLMs) and generalized additive models (GAMs) with MODIS/Aqua and auxiliary data as inputs can predict Secchi depth at a regional scale. It uses cross-validation to test the prediction accuracy of hundreds of GAMs and GLMs with up to 5 input variables. A GAM with 3 input variables (chlorophyll a, remote sensing reflectance at 678 nm, and long-term mean salinity) made the most accurate predictions. Tested against field observations not used for model selection and calibration, the best model's mean absolute error (MAE) for daily predictions was 1.07 m (22%), more than 50% lower than for other publicly available Baltic Sea Secchi depth maps. The MAE for predicting monthly averages was 0.86 m (15%). Thus, the proposed model selection process was able to find a regional model with good prediction accuracy. It could be useful to find predictive models for environmental variables other than Secchi depth, using data from other satellite sensors, and for other regions where non-standard remote sensing models are needed for prediction and mapping. Annual and monthly mean Secchi depth maps for 2003-2012 come with this paper as Supplementary materials.
Resumo:
Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography-the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99-110, 2012, doi:10.1016/j.jog.2011.07.0069; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie, 2012, http://nbn-resolving.de/nbn:de:hbz:5n-29199). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the geodetically derived mean dynamic topography with the full error structure in a 3D stationary inverse ocean model improves modeled oceanographic features over previous estimates.
Resumo:
These data are provided to allow users for reproducibility of an open source tool entitled 'automated Accumulation Threshold computation and RIparian Corridor delineation (ATRIC)'
Resumo:
In this paper, a new high-resolution elevation model of Greenland, including the ice sheet as well as the ice free regions, is presented. It is the first published full coverage model, computed with an average resolution of 2 km and providing an unprecedented degree of detail. The topography is modeled from a wide selection of data sources, including satellite radar altimetry from Geosat and ERS 1, airborne radar altimetry and airborne laser altimetry over the ice sheet, and photogrammetric and manual map scannings in the ice free region. The ice sheet model accuracy is evaluated by omitting airborne laser data from the analysis and treating them as ground truth observations. The mean accuracy of the ice sheet elevations is estimated to be 12-13 m, and it is found that on surfaces of a slope between 0.2° and 0.8°, corresponding to approximately 50% of the ice sheet, the model presents a 40% improvement over models based on satellite altimetry alone. On coastal bedrock, the model is compared with stereo triangulated reference points, and it is found that the model accuracy is of the order of 25-35 m in areas covered by stereo photogrammetry scannings and between 200 and 250 m elsewhere.
Resumo:
Alkenone-based Cenozoic records of the partial pressure of atmospheric carbon dioxide (pCO2) are founded on the carbon isotope fractionation that occurred during marine photosynthesis (epsilon [p37:2]). However, the magnitude of epsilon [p37:2] is also influenced by phytoplankton cell size - a consideration lacking in previous alkenone-based CO2 estimates. In this study, we reconstruct cell size trends in ancient alkenone-producing coccolithophores (the reticulofenestrids) to test the influence that cell size variability played in determining epsilon [p37:2] trends and pCO2 estimates during the middle Eocene to early Miocene. At the investigated deep-sea sites, the reticulofenestrids experienced high diversity and largest mean cell sizes during the late Eocene, followed by a long-term decrease in maximum cell size since the earliest Oligocene. Decreasing haptophyte cell sizes do not account for the long-term increase in the stable carbon isotopic composition of alkenones and associated decrease in epsilon [p37:2] values during the Paleogene, supporting the conclusion that the secular pattern of epsilon [p37:2] values is primarily controlled by decreasing CO2 concentration since the earliest Oligocene. Further, given the physiology of modern alkenone producers, and considering the timings of coccolithophorid cell size change, extinctions, and changes in reconstructed pCO2 and temperature, we speculate that the selection of smaller reticulofenestrid cells during the Oligocene primarily reflects an adaptive response to increased [CO2(aq)] limitation.