4 resultados para Mobilize

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palladium, platinum, and gold were analyzed for 20 interstitial water samples from Leg 125. No Pd or Pt was detected in fluids from serpentinite muds from Conical Seamount in the Mariana forearc, indicating that low-temperature seawater-peridotite interaction does not mobilize these elements into the serpentinizing fluids to levels above 0.10 parts per billion (ppb) in solution. However, Au may be mobilized in high pH solutions. In contrast, fluids from vitric-rich clays on the flanks of the Torishima Seamount in the Izu-Bonin forearc have Pd values of between 4.0 and 11.8 nmol/L, Pt values between 2.3 and 5.0 nmol/L and Au values between 126.9 and 1116.9 pmol/L. The precious metals are mobilized, and possibly adsorbed onto clay mineral surfaces, during diagenesis and burial of the volcanic-rich clays. Desorption during squeezing of the sediments may produce the enhanced precious metal concentrations in the analyzed fluids. The metals are mobilized in the fluids probably as neutral hydroxide, bisulfide, and ammonia complexes. Pt/Pd ratios are between 0.42 and 2.33, which is much lower than many of the potential sources for Pt and Pd but is consistent with the greater solubility of Pd compared with Pt in most natural low-temperature fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Bündnerschiefer of the Swiss-Italian Alps is a large sedimentary complex deposited on the Piemonte-Liguria and Valais oceans and associated continental margins from the upper Jurassic to Eocene. It is made of a large variety of sequences associated or not with an ophiolitic basement. The Bündnerschiefer makes an accretionary prism that developed syn-tectonically from the onset of alpine subduction, and it records orogenic metamorphism following episodes of HP metamorphism. The Bündnerschiefer shares important similarities with the Otago schists of New Zealand and with the Wepawaug schists of Connecticut, both of which form accretionary prisms and have an orogenic metamorphic imprint. With the aim of testing the hypothesis of mobility of chemical components as a function of metamorphic grade, in this work I present fifty-five bulk chemical analyses of various lithological facies of the Bündnerschiefer collected along the well-studied field gradient of the Lepontine dome of Central Switzerland, in the Prättigau half window of East Switzerland, and in the Tsaté Nappe of Valle d'Aosta (Italy). The dataset includes the concentration of major components, large ion lithophile elements (Rb, Sr, Ba, Cs), high field strength elements (Zr, Ti, Nb, Th, U, Ta, Hf), fluid-mobile light elements (B, Li), volatiles (CO2, S), REEs, and Y, V, Cr, Co, Sn, Pb, Cu, Zn, Tl, Sb, Be, and Au. These data are compared against the compositions of the global marine sediment reservoir, typical crustal reservoirs, and against the previously measured compositions of Otago and Wepawaug schists. Results reveal that, irrespective of their metamorphic evolution, the bulk chemical compositions of orogenic metasediments are characterized by mostly constant compositional ratios (e.g., K2O/Al2O3, Ba/Al2O3, Sr/CaO, etc.), whose values in most cases are undistinguishable from those of actual marine sediments and other crustal reservoirs. For these rocks, only volatile concentrations decrease dramatically as a function of metamorphic temperature, and significant deviations from the reservoir signatures are evident for SiO2, B, and Li. These results are interpreted as an indication of residual enrichment in the sediments, a process taking place during syn-metamorphic dehydration from the onset of metamorphism in a regime of chemical immobility. Residual enrichment increased the absolute concentrations of the chemical components of these rocks, but did not modify significantly their fundamental ratios. This poor compositional modification of the sediments indicates that orogenic metamorphism in general does not promote significant mass transfer from accretionary prisms. In contrast, mass transfer calculations carried out in a shear zone crosscutting the Bündnerschiefer shows that significant mass transfer occurs within these narrow zones, resulting in gains of H2O, SiO2, Al2O3, K2O, Ba, Y, Rb, Cu, V, Tl, Mo, and Ce during deformation and loss of Na2O, CO2, S, Ni, B, U, and Pb from the rock. These components were presumably transported by an aquo-carbonic fluid along the shear zone. These distinct attitudes to mobilize chemical elements from orogenic sediments may have implications for a potentially large number of geochemical processes in active continental margins, from the recycling of chemical components at plate margins to the genesis of hydrothermal ore deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analyses of sediments from Leg 64 sites reveal a diverse and in one case unique geochemistry. Sites are characterized by high heat flow along an active, divergent plate boundary, or rapid accumulation of diatom muds, or both. The geochemical trends of Sites 474-476 at the tip of Baja California reflect changes4n the percentages of sedimentary components - particularly biogenous matter and mineralogy - that support interpretations of sedimentary environments inferred to be present since the commencement of subsidence along this young, passive continental margin. The sediments below dolerite sills in Holes 477, 477A, 478, and 481 show major mineralogic and chemical deviations from "average" hemipelagic sediments. The sills appear to have two functions: (1) they allow hydrothermal circulation and metamorphism in a partially closed system by trapping heat and fluids emanating from below, and (2) they expel heated interstitial fluids at the moment of intrusion and mobilize elements, most likely leading to the formation of metalliferous deposits along the surface traces of normal faults in the basin. The hydrothermal system as a whole appears to be localized and ephemeral, as is indicated by the lack of similar geochemical trends and high heat flow at Sites 478 and 481. Site 479 illustrates sedimentation in an oxygen-minimum zone with anoxic sediments and concomitant geochemical trends, especially for MnO. With few exceptions, geochemical trends are remarkably constant with depth, suggesting that Site 479 can serve as an "internal" standard or average sediment against which the magnitude of hydrothermal alteration at the basinal Sites 477, 478, and 481 can be measured.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seafloor sediment mobilization on the inner Northwest Iberian continental shelf is caused largely by ocean surface waves. The temporal and spatial variability in the wave height, wave period, and wave direction has a profound effect on local sediment mobilization, leading to distinct sediment mobilization scenarios. Six grain-size specific sediment mobilization scenarios, representing seasonal average and storm conditions, were simulated with a physics-based numerical model. Model inputs included meteorological and oceanographic data in conjunction with seafloor grain-size and the shelf bathymetric data. The results show distinct seasonal variations, most importantly in wave height, leading to sediment mobilization, specifically on the inner shelf shallower than 30 m water depth where up to 49% of the shelf area is mobilized. Medium to severe storm events are modeled to mobilize up to 89% of the shelf area above 150 m water depth. The frequency of each of these seasonal and storm-related sediment mobilization scenarios is addressed using a decade of meteorological and oceanographic data. The temporal and spatial patterns of the modeled sediment mobilization scenarios are discussed in the context of existing geological and environmental processes and conditions to assist scientific, industrial and environmental efforts that are directly affected by sediment mobilization. Examples, where sediment mobilization plays a vital role, include seafloor nutrient advection, recurrent arrival of oil from oil-spill-laden seafloor sediment, and bottom trawling impacts.