3 resultados para Mixed Elliptic Problems with Singular Interfaces
em Publishing Network for Geoscientific
Resumo:
We studied how environmental conditions affect reproduction in sympatric skua species that differ in their reliance on marine resources: the exclusively marine foraging south polar skua Catharacta maccormicki, the terrestrially foraging brown skua C. antarctica lonnbergi and mixed species pairs with an intermediate diet. Egg size, clutch asymmetry and hatching dates varied between species and years without consistent patterns. In the south polar skuas, 12 to 38% of the variation in these parameters was explained by sea surface temperature, sea ice cover and local weather. In mixed species pairs and brown skuas, the influence of environmental factors on variation in clutch asymmetry and hatching date decreased to 10-29%, and no effect on egg size was found. Annual variation in offspring growth performance also differed between species with variable growth in chicks of south polar skuas and mixed species pairs, and almost uniform growth in brown skuas. Additionally, the dependency on oceanographic and climatic factors, especially local wind conditions, decreased from south polar skuas to brown skua chicks. Consistent in all species, offspring were more sensitive to environmental conditions during early stages; during the late chick stage (>33 d) chick growth was almost independent of environmental conditions. The net breeding success could not be predicted by any environmental factor in any skua species, suggesting it may not be a sensitive indicator of environmental conditions. Hence, the sensitivity of skuas to environmental conditions varied between species, with south polar skuas being more sensitive than brown skuas, and between breeding periods, with the egg parameters being more susceptible to oceanographic conditions. However, during offspring development, local climatic conditions became more important. We conclude that future climate change in the Maritime Antarctic will affect reproduction of skuas more strongly through changes in sea ice cover and sea surface temperature (and the resulting alterations to the marine food web) than through local weather conditions.
Resumo:
A high-resolution study of palaeoceanographic changes off North Iceland during the time period 8600-5200 cal year BP is based on benthic and planktonic foraminiferal assemblages. The core material (MD99-2275) was obtained from about 440 m water depth on the eastern part of the North Icelandic shelf. Changes in the faunal composition are interpreted to be mainly caused by variations in the strength of the relatively warm, high-salinity Irminger Current and the cold East Icelandic Current, which have been shown to be linked to the climatic changes in the North Atlantic region. Environmental proxies at that site are particularly sensitive to palaeoceanographic changes due to its position close to the marine Polar Front. Benthic assemblages show that relatively cold conditions prevailed at the base of the record. An increase in the influence of Atlantic water masses at the sea floor is seen at around 8400 cal year BP, whereas the surface waters were relatively warm already at 8600 cal year BP. The warming was interrupted by a cold event at around 8100-8000 cal year BP, registered both in the bottom and surface waters and correlated with the so-called 8.2 kyr cooling event. Both the benthic and the planktonic faunal compositions indicate that the Irminger Current had maximum influence in the area between 8000 and about 7300 cal year BP, followed by a gradually decreasing influence through the remaining part of the studied time interval. It is suggested that the contribution of Atlantic water masses from the east and north-east to the Arctic Surface waters off North Iceland increased after around 7000 cal year BP, and that this was further intensified after 6200 cal year BP. At present, the Arctic Surface Water north of Iceland consists of Polar waters, intermittently with direct influence from the East Greenland Current, mixed with Atlantic waters derived from the eastern part of the Nordic Seas. A comparison of the mean values of selected environmental proxies in the interval 8600-5200 cal year BP with the upper part of the same core shows that the water masses north of Iceland were considerably warmer during the Holocene thermal maximum than during the last 2000 cal year. In general, results from core MD99-2275 are in accordance with other marine records from the North Icelandic shelf and the northern North Atlantic region, although a detailed comparison on a centennial time scale is hampered by problems with spatial as well as temporal changes in the marine reservoir ages in the region.