6 resultados para Minimization of open stack problem

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data contains realized ecological niche estimates of phytoplankton taxa within the mixed layer of the open ocean. The estimates are based on data from the MARine Ecosystem DATa (MAREDAT) initiative, and cover five phytoplankton functional types: coccolithophores (40 species), diatoms (87 species), diazotrophs (two genera), Phaeocystis (two species) and picophytoplankton (two genera). Considered as major niche dimensions were temperature (°C), mixed layer depth (MLD; m), nitrate concentration (µmoles/L), mean photosynthetically active radiation in the mixed layer (MLPAR; µmoles/m**2/s), salinity, and the excess of phosphate versus nitrate relative to the Redfield ratio (P*; µmoles/L). For each niche dimension at a time, conditions at presence locations of the taxa were contrasted with conditions in 12 000 randomly sampled points from the open ocean using MaxEnt models. We used the quartiles of the response curves of these models to parameterize realized niche centers and niche breadths: the median (q50) of the response curves was considered to be the niche center and the distance between the lower quartile (q25) and the upper quartile (q75) was used as a rough estimate of niche breadth. We only reported meaningful niche estimates, i.e., estimates based on MaxEnt models that perform significantly better than random, as indicated by an area under the curve (AUC) score significantly larger than 0.5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photophysiological processes as well as uptake characteristics of iron and inorganic carbon were studied in inshore phytoplankton assemblages of the Western Antarctic Peninsula (WAP) and offshore assemblages of the Drake Passage. Chlorophyll a concentrations and primary productivity decreased from in- to offshore waters. The inverse relationship between low maximum quantum yields of photochemistry in PSII (Fv/Fm) and large sizes of functional absorption cross sections (sigma PSII) in offshore communities indicated iron-limitation. Congruently, the negative correlation between Fv/Fm values and iron uptake rates across our sampling locations suggest an overall better iron uptake capacity in iron-limited pelagic phytoplankton communities. Highest iron uptake capacities could be related to relative abundances of the haptophyte Phaeocystis antarctica. As chlorophyll a-specific concentrations of humic-like substances were similarly high in offshore and inshore stations, we suggest humic-like substances may play an important role in iron chemistry in both coastal and pelagic phytoplankton assemblages. Regarding inorganic carbon uptake kinetics, the measured maximum short-term uptake rates (Vmax(CO2)) and apparent half-saturation constants (K1/2(CO2)) did not differ between offshore and inshore phytoplankton. Moreover, Vmax(CO2) and K1/2(CO2) did not exhibit any CO2-dependent trend over the natural pCO2 range from 237 to 507 µatm. K1/2(CO2) strongly varied among the sampled phytoplankton communities, ranging between 3.5 and 35.3 µmol/L CO2. While in many of the sampled phytoplankton communities, the operation of carbon-concentrating mechanisms (CCMs) was indicated by low K1/2(CO2) values relative to ambient CO2 concentrations, some coastal sites exhibited higher values, suggesting down-regulated CCMs. Overall, our results demonstrate a complex interplay between photophysiological processes, iron and carbon uptake of phytoplankton communities of the WAP and the Drake Passage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a 5.3-Myr stack (the ''LR04'' stack) of benthic d18O records from 57 globally distributed sites aligned by an automated graphic correlation algorithm. This is the first benthic delta18O stack composed of more than three records to extend beyond 850 ka, and we use its improved signal quality to identify 24 new marine isotope stages in the early Pliocene. We also present a new LR04 age model for the Pliocene-Pleistocene derived from tuning the delta18O stack to a simple ice model based on 21 June insolation at 65 N. Stacked sedimentation rates provide additional age model constraints to prevent overtuning. Despite a conservative tuning strategy, the LR04 benthic stack exhibits significant coherency with insolation in the obliquity band throughout the entire 5.3 Myr and in the precession band for more than half of the record. The LR04 stack contains significantly more variance in benthic delta18O than previously published stacks of the late Pleistocene as the result of higher resolution records, a better alignment technique, and a greater percentage of records from the Atlantic. Finally, the relative phases of the stack's 41- and 23-kyr components suggest that the precession component of delta18O from 2.7-1.6 Ma is primarily a deep-water temperature signal and that the phase of d18O precession response changed suddenly at 1.6 Ma.