307 resultados para Mikania glomerata
em Publishing Network for Geoscientific
Resumo:
This data set contains aboveground community biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2004 just prior to mowing (during peak standing biomass in late May and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in four rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.
Resumo:
Foraminifera were examined in recent (<100 years) fine-grained glaciomarine muds from surface sediments and cores from Nordensheld Bay, Novaja Zemlja, and Hornsund and Bellsund, Spitsbergen. This study presents the first data on modern foraminifera distribution for fjord environments in Novaja Zemlja, Russia. The data are interpreted with reference to the distribution of foraminiferal near Svalbard and the Barents Sea. In Nordensheld Bay, live and dead Nonionellina labradorica and Islandiella norcrossi are most abundant in the outer fjord. Cassidulina reniforme and Allogromiina spp. dominate in the middle and inner fjord. The dominant species are dissimilar to species occurring in other areas of the Barents Sea region, with the exception of Svalbard fjords. The number of live foraminifera (24 to 122 tests/10 cm1) in outer and middle Nordensheld Bay corresponds with values known from the open Barents Sea. However, the biomass (0.03 mg/10 cm**3) is two orders of magnitude less due to smaller foraminiferal test size, which in glaciomarine sediments reflects the absence of larger species, paucity of large specimens, and high occurrence of juvenile foraminifera. The smaller size indicates an opportunistic response to environmental stress due to glacier proximity. The presence of Quinqueloculina stalkeri is diagnostic of glaciomarine environments in fjords of Novaja Zemlja and Svalbard.
Resumo:
Sediments from the western and southern part of the Arabian Sea were collected periodically in the spring intermonsoon between March and May 1997 and additionally at the end of the Northeast Monsoon in February 1998. Assemblages of Rose Bengal stained, living deep-sea benthic foraminifera, their densities, vertical distribution pattern, and diversity were analysed after the Northeast Monsoon and short-time changes were recorded. In the western Arabian Sea, foraminiferal numbers increased steadily between March and the beginning of May, especially in the smaller size classes (30-63 µm, 63-125 µm). At the same time, the deepening of the foraminiferal living horizon, variable diversity and rapid variations between dominant foraminiferal communities were observed. We interpret these observations as the time-dependent response of benthic foraminifera to enhanced organic carbon fluxes during and after the Northeast Monsoon. In the southern Arabian Sea, constant low foraminiferal abundances during time, no distinctive change in the vertical distribution, reduced diversity, and more stable foraminiferal communities were noticed, which indicates no or little influence of the Northeast Monsoon to benthic foraminifera in this region.
Resumo:
This data set contains aboveground community biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2007 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in four (May) or three (August) rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.
Resumo:
This data set contains aboveground community biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2006 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in four rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.
Resumo:
Live (Rose Bengal stained) and dead benthic foraminiferal communities (hard-shelled species only) from the Pakistan continental margin oxygen minimum zone (OMZ) have been studied in order to determine the relation between faunal composition and the oxygenation of bottom waters. During R.R.S. Charles Darwin Cruises 145 and 146 (12 March to May 28 2003), 11 multicores were taken on the continental margin off Karachi, Pakistan. Two transects were sampled, constituting a composite bathymetric profile from 136 m (above the OMZ in spring 2003) down to 1870 m water depth. Cores (surface area 25.5 cm2) were processed as follows: for stations situated above, and in the upper part of the OMZ, sediment slices were taken for the 0-0.5 and 0.5-1 cm intervals, and then in 1 cm intervals down to 10 cm. For the lower part of the OMZ, the second centimetre was also sliced in half-centimetre intervals. Each sample was stored in 10 % borax-buffered formalin for further processing. Onshore, the samples were wet sieved over 63 µm, 150 µm and 300 µm sieves and the residues were stained for one week in ethanol with Rose Bengal. After staining, the residue was washed again. The stained faunas were picked wet in three granulometric fractions (63-150 µm, 150-300 µm and >300 µm), down to 10 cm depth. To gain more insight into the population dynamics we investigated the dead (unstained) foraminifera in the 2-3 cm level for the fractions 150-300 µm and >300 µm. The fractions >300 µm and 150-300 µm show nearly the same faunal distribution and therefore the results are presented here for both fractions combined (i.e. the >150 µm fraction). Live foraminiferal densities show a clear maximum in the first half centimetre of the sediment; only few specimens are found down to 4 cm depth. The faunas exhibit a clear zonation across the Pakistan margin OMZ. Down to 500 m water depth, Uvigerina ex gr. U. semiornata and Bolivina aff. B. dilatata dominate the assemblages. These taxa are largely restricted to the upper cm of the sediment. They are adapted to the very low bottom-water oxygen values (ab. 0.1 ml/l in the OMZ core) and the extremely high input of organic carbon on the upper continental slope. The lower part of the OMZ is characterized by cosmopolitan faunas, containing also some taxa that in other areas have been described in deep infaunal microhabitats.
Resumo:
Assemblages of living deep-sea benthic foraminifera, their densities, vertical distribution pattern, and diversity, were investigated in the intermonsoon period after the northeast monsoon in the Arabian Sea in spring 1997. Foraminiferal numbers show a distinct gradient from north to south, with a maximum of 623 foraminifera in 50 cm**3 at the northern site. High percentages of small foraminifera were found in the western and northern part of the Arabian Sea. Most stations show a typical vertical distribution with a maximum in the first centimeter and decreasing numbers with increasing sediment depths. But at the central station, high densities can be found even in deeper sediment layers. Diversity is very high at the northern and western sites, but reduced at the central and southern stations. Data and faunal assemblages were compared with studies carried out in 1995. A principal component analysis of intermonsoon assemblages shows that the living benthic foraminifera can be characterized by five principal component communities. Dominant communities influencing each site differ strongly between the two years. In spring 1997, stations in the north, west and central Arabian Sea were dominated by opportunistic species, indicating the influence of fresh sedimentation pulses or enhanced organic carbon fluxes after the northeast monsoon.
Resumo:
Surface sediment was sampled at two bathyal sites in the southwestern Gulf of Lions in the western Mediterranean Sea in February and August 1997 to study the distribution and microhabitat of living (Rose Bengal stained) deep sea benthic foraminifera. Both standing stock and diversity of the faunas, and the microhabitat of distinct species mirror the trophic situation and the depth of the oxidised layer at the different sites. Our results suggest that the faunas do not comprise highly opportunistic species and are adapted to rather stable environments. In the axial channel of the Lacaze-Duthiers Canyon, organic matter fluxes are enhanced due to advective transport of organic matter resulting in elevated oxygen consumption rates in the surface sediment and a rather thin oxidised layer. The corresponding benthic foraminiferal fauna is characterised by rather high standing stock and diversity, and a well-developed deep infauna. In addition to freshly deposited phytodetritus, more degraded organic matter seems to be an important food source. In contrast, at the open slope, organic matter fluxes and oxygen consumption rates in the surface sediment are lower and the oxidised layer is much thicker than inside the canyon. The corresponding benthic foraminiferal fauna comprises mainly epifaunal and shallow-infaunal species with much lower standing stocks and clear differences between February and August. In August standing stocks are higher and the average living depths of most species shift towards the sediment surface. These differences can be attributed to patchiness or represent a seasonal trophic signal.
Resumo:
This data set contains aboveground community biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2003 just prior to mowing (during peak standing biomass in late May and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in four rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.
Resumo:
This data set contains aboveground community plant biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the dominance experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the dominance experiment, 206 grassland plots of 3.5 x 3.5 m were established from a pool of 9 plant species that can be dominant in semi-natural grassland communities of the study region. In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 3, 4, 6, and 9 species). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in May and August 2006 on all experimental plots of the dominance experiment. This was done by clipping the vegetation at 3 cm above ground in two rectangles of 0.2 x 0.5 m per experimental plot. The location of these rectangles was assigned by random selection of coordinates within the central area of the plots (excluding an outer edge of 50cm). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material, and remaining plant material that could not be assigned to any category. All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The mean of both samples per plot and the individual measurements are provided in the data file. Overall, analyses of the community biomass data have identified species richness and the presence of particular species as an important driver of a positive biodiversity-productivity relationship.
Resumo:
This data set contains measurements of species-specific plant height: vegetative height (non-flowering indviduals) and regenerative height (flowering individuals) measured for all sown species separetly in 2002. Data was recorded in the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2002, plant height was recorded two times: in late July (vegetative height) and just before biomass harvest during peak standing biomass in late August (vegetative and regenerative height). For each plot and each sown species in the species pool, 3 plant individuals (if present) from the central area of the plots were randomly selected and used to measure vegetative height (non-flowering indviduals) and regenerative height (flowering individuals) as stretched height. Provided are the means over the three measuremnts per plant species per plot.
Resumo:
This data set contains aboveground community plant biomass (Sown plant community, Weed plant community, and Dead plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the dominance experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the dominance experiment, 206 grassland plots of 3.5 x 3.5 m were established from a pool of 9 plant species that can be dominant in semi-natural grassland communities of the study region. In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 3, 4, 6, and 9 species). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in May and August 2003 on all experimental plots of the dominance experiment. This was done by clipping the vegetation at 3 cm above ground in two rectangles of 0.2 x 0.5 m per experimental plot. The location of these rectangles was assigned by random selection of coordinates within the central area of the plots (excluding an outer edge of 50cm). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material, and remaining plant material that could not be assigned to any category. All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The mean of both samples per plot and the individual measurements are provided in the data file. Overall, analyses of the community biomass data have identified species richness and the presence of particular species as an important driver of a positive biodiversity-productivity relationship.