14 resultados para Microextraction, chromatography, triazole fungicides
em Publishing Network for Geoscientific
Resumo:
Low-molecular-weight (LMW) alcohols are produced during the microbial degradation of organic matter from precursors such as lignin, pectin, and carbohydrates. The biogeochemical behavior of these alcohols in marine sediment is poorly constrained but potentially central to carbon cycling. Little is known about LMW alcohols in sediment pore waters because of their low concentrations and high water miscibility, both of which pose substantial analytical challenges. In this study, three alternative methods were adapted for the analysis of trace amounts of methanol and ethanol in small volumes of saline pore waters: direct aqueous injection (DAI), solid-phase microextraction (SPME), and purge and trap (P&T) in combination with gas chromatography (GC) coupled to either a flame ionization detector (FID) or a mass spectrometer (MS). Key modifications included the desalination of samples prior to DAI, the use of a threaded midget bubbler to purge small-volume samples under heated conditions and the addition of salt during P&T. All three methods were validated for LMW alcohol analysis, and the lowest detection limit (60 nM and 40 nM for methanol and ethanol, respectively) was achieved with the P&T technique. With these methods, ambient concentrations of volatile alcohols were determined for the first time in marine sediment pore waters of the Black Sea and the Gulf of Mexico. A strong correlation between the two compounds was observed and tentatively interpreted as being controlled by similar sources and sinks at the examined stations.
Resumo:
Seventeen sediment samples of Albian-Cenomanian to early Pliocene age from DSDP Hole 530A in the Angola Basin and six sediment samples of early Pliocene to late Pleistocene age from the Walvis Ridge were investigated by organic geochemical methods, including organic carbon determination, Rock-Eval pyrolysis, gas chromatography and combined gas chromatography/mass spectrometry of extractable hydrocarbons, and kerogen microscopy. The organic matter in all samples is strongly influenced by a terrigenous component from the nearby continent. The amount of marine organic matter present usually increases with the total organic carbon content, which reaches an extreme value of more than 10% in a Cenomanian black shale from Hole 530A. At Site 530 the extent of preservation of organic matter in the deep sea sediments is related to mass transport down the continental slope, whereas the high organic carbon contents in the sediments from Site 532 reflect both high bioproductivity in the Benguela upwelling regime and considerable supply of terrigenous organic matter. The maturation level of the organic matter is low in all samples.
Resumo:
Phosphorus cycling in the ocean is influenced by biological and geochemical processes that are reflected in the oxygen isotope signature of dissolved inorganic phosphate (Pi). Extending the Pi oxygen isotope record from the water column into the seabed is difficult due to low Pi concentrations and small amounts of marine porewaters available for analysis. We obtained porewater profiles of Pi oxygen isotopes using a refined protocol based on the original micro-extraction designed by Colman (2002). This refined and customized method allows the conversion of ultra-low quantities (0.5 - 1 µmol) of porewater Pi to silver phosphate (Ag3PO4) for routine analysis by mass spectrometry. A combination of magnesium hydroxide co-precipitation with ion exchange resin treatment steps is used to remove dissolved organic matter, anions, and cations from the sample before precipitating Ag3PO4. Samples as low as 200 µg were analyzed in a continuous flow isotope ratio mass spectrometer setup. Tests with external and laboratory internal standards validated the preservation of the original phosphate oxygen isotope signature (d18OP) during micro extraction. Porewater data on d18OP has been obtained from two sediment cores of the Moroccan margin. The d18OP values are in a range of +19.49 to +27.30 per mill. We apply a simple isotope mass balance model to disentangle processes contributing to benthic P cycling and find evidence for Pi regeneration outbalancing microbial demand in the upper sediment layers. This highlights the great potential of using d18OP to study microbial processes in the subseafloor and at the sediment water interface.