11 resultados para Methyl ketones

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The concentration of C37-C39 long-chain alkenones and alkenes were determined in surface water and surface sediment samples from the subpolar waters of the Southern Ocean. Distributions of these compounds were similar in both sample sets indicating little differential degradation between or within compound classes. The relative amounts of the tri- to tetra-unsaturated C37 alkenones increased with increasing temperature for temperatures below 6°C similar to the di- and tri-unsaturated C37 alkenones. The C37 di-, tri-, and tetra-unsaturated methyl alkenones are used in paleotemperature calculations via the U37K and the U37K ratios. In these datasets, the relative abundances of the C37:2 and the C37.3 alkenones as a proportion of the total C37 alkenones were opposite and strongly related to temperature (the latter with more scatter), but the abundance of the C37:4 alkenone showed no relationship with temperature. The original definition of U37K includes the abundance of 37:4 in both the numerator and denominator, and thus it is perhaps not surprising that there is considerable scatter in the values obtained for U37K at low temperatures. Of the two, we suggest that U37K' is the better parameter for use in paleotemperature estimations, even in cold locations. U37K' values in the sediments fall on virtually the same regression line obtained for the water column samples of Sikes and Volkman (1993, doi:10.1016/0016-7037(93)90120-L), indicating that their calibration is suitable for use in Southern Ocean sediments. The comparison of water column data with sedimentary temperature estimates suggests that the alkenone distributions are dominated by contributions from the summer when the biomass of Emiliania huxleyi and presumably flux to the sediment, is expected to be high.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geochemical studies of organic "biomarker" compounds were applied to Eemian sediments cored at Dagebuell (DA-1) on the west coast, and at Krummland (KR-1) in the east of the Baltic Zone of Schleswig-Holstein, Germany. 10 samples from the early stage of the Eemian Transgression to the high Eem at Krummland, and 24 samples from the peak and late phases of the Eemian at Dagebuell provide new insights on the development of the Eemian Sea in the region. C37-C39-ethyl- and methyl-ketones in the Krummland sediments indicated unstable conditions at the onset of the marine trangression, and freshwater influence in keeping with their shallow nearshore environment. In the Dagebuell deposits, patterns typical of marine to brackish conditions were observed, comparable to those found today in the Skagerrak and Belt Sea areas. The sea-surface temperatures estimated from the alkenone unsaturation ratio UK37 at DA-1 corroborate the evidence from "standard" faunal and pollen assemblages, and lithological successions. Here, the temperature maximum attained in pollen assemblage zone PAZ Illc, indicates the early onset of very warm conditions, preceding the highest sea level of the penultimate interglacial by 8,000 years, based on previously published U/Th ages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Production pathways of the prominent volatile organic halogen compound methyl iodide (CH3I) are not fully understood. Based on observations, production of CH3I via photochemical degradation of organic material or via phytoplankton production has been proposed. Additional insights could not be gained from correlations between observed biological and environmental variables or from biogeochemical modeling to identify unambiguously the source of methyl iodide. In this study, we aim to address this question of source mechanisms with a three-dimensional global ocean general circulation model including biogeochemistry (MPIOM-HAMOCC (MPIOM - Max Planck Institute Ocean Model HAMOCC - HAMburg Ocean Carbon Cycle model)) by carrying out a series of sensitivity experiments. The simulated fields are compared with a newly available global data set. Simulated distribution patterns and emissions of CH3I differ largely for the two different production pathways. The evaluation of our model results with observations shows that, on the global scale, observed surface concentrations of CH3I can be best explained by the photochemical production pathway. Our results further emphasize that correlations between CH3I and abiotic or biotic factors do not necessarily provide meaningful insights concerning the source of origin. Overall, we find a net global annual CH3I air-sea flux that ranges between 70 and 260 Gg/yr. On the global scale, the ocean acts as a net source of methyl iodide for the atmosphere, though in some regions in boreal winter, fluxes are of the opposite direction (from the atmosphere to the ocean).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of long-chain (C37, C38, C39), primarily di and tri-unsaturated methyl and ethyl ketones, first identified in sediments from Walvis Ridge off West Africa and from Black Sea (de Leeuw et al., 1979), has been found in marine sediments throughout the world (Brassell et al., 1986 doi:10.1038/320129a0). The marine coccolithophorid Emiliania huxleyi and members of the class Prymnesiophyceae are now the recognized sources of these compounds (Volkman et al., 1979; Marlowe, et al., 1984). Experiments with laboratory cultures of algae showed the degree of unsaturation in the ketone seris biosynthesized depends on growth temperature (Brassell et al., 1986; Marlowe, 1984), a physiological respons observed for classical membrane lipids (vanDeenen et al., 1972). Brassell and co-workers (Brassell et al., 198; Brassell et al., 1986b) thus proposed that systematic fluctuations in the unsaturation of these alkenones noted down-core in sediments from the Kane Gap region of the north-east tropical Atlantic Ocean and correlated with glacial-interglacial cycles provide an organic geochemical measure of past sea-surface water temperatures. Using laboratory cultures of E. huxleyi, we have calibrated changes in the unsaturation pattern of the long-chain ketone series versus growth temperature. The calibration curve is linear and accurtely predicts unsuturation patterns observed in natural particulate materials collected from oceanic waters of known temperature. We present evidence supporting the proposed paleotemperature hypothesis (Brassell et al., 1986, Brassel et al., 1986b) and suggesting absolute 'sea-surface temperatures' for a given oceanic location can be estimated from an analysis of long-chain ketone compositions preserved in glacial and interglacial horizons of deep-sea sediment cores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polar compound (NSO) fractions of seabed petroleums and sediment extracts from the Guaymas Basin hydrothermal system have been analyzed by gas chromatography and gas chromatography-mass spectrometry. The oils were collected from the interiors and exteriors of high temperature hydrothermal vents and represent hydrothermal pyrolysates that have migrated to the seafloor by hydrothermal fluid circulation. The downcore samples are representative of both thermally unaltered and thermally altered sediments. The survey has revealed the presence of oxygenated compounds correlated with samples exhibiting a high degree of thermal maturity. Several homologous series of related ketone isomers are enriched in the interiors of the hydrothermal vent samples or in hydrothermally-altered sequences of the downcore sediments (DSDP Holes 477 and 481A). The n-alkanones range in carbon number from C11 to C33 with a Cmax from 14 to 23, distributions that are similar to those of the n-alkanes. The alkan-2-ones are usually in highest concentrations, with lower amounts of 3-, 4-, 5-, 6-, 7- (and higher) alkanones, and they exhibit no carbon number preference (there is an odd carbon number preference of alkanones observed for downcore samples). The alkanones are enriched in the interiors of the hydrothermal vent spires or in downcore hydrothermally-altered sediments, indicating an origin at depth or in the hydrothermal fluids and not from an external biogenic deposition. Minor amounts of C13 and C18 isoprenoid ketones are also present. Simulation of the natural hydrothermal alternation process by laboratory hydrous pyrolysis techniques provided information regarding the mode of alkanone formation. Hydrous pyrolysis of n-C32H66 at 350°C for 72 h with water only or water with inorganic additives has been studied using a stainless steel reaction vessel. In each experiment oxygenated hydrocarbons, including alkanones, were formed from the n-alkane. The product distributions indicate a reaction pathway consisting of n-alkanes and a-olefins as primary cracking products with internal olefins and alkanones as secondary reaction products. Hydrous pyrolyses of Messel shale spiked with molecular probes have been performed under similar time and temperature constraints to produce alkanone distributions like those found in the hydrothermal vent petroleums.