2 resultados para Mesoscale processes

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radiosonde measurements obtained at the Arctic site Ny-Ålesund (78.9° N, 11.9° E), Svalbard, from 1993 to 2014 have been homogenized accounting for instrumentation discontinuities by correcting known errors in the manufacturer provided profiles. From the homogenized data record, the first Ny-Ålesund upper-air climatology of wind, temperature and humidity is presented, forming the background for the analysis of changes during the 22-year period. Particularly during the winter season, a strong increase in atmospheric temperature and humidity is observed, with a significant warming of the free troposphere in January and February up to 3 K per decade. This winter warming is even more pronounced in the boundary layer below 1 km, presumably amplified by mesoscale processes including e.g. orographic effects or the boundary layer capping inversion. Though the largest contribution to the increasing atmospheric water vapour column in winter originates from the lowermost 2 km, no increase in the contribution by specific humidity inversions is detected. Instead, we find an increase in the humidity content of the large scale background humidity profiles. At the same time, the tropospheric flow in winter is found to occur less frequent from northerly directions and to the same amount more frequent from the South. We conclude that changes in the atmospheric circulation lead to an enhanced advection of warm and moist air from lower latitudes to the Svalbard region in the winter season, causing the warming and moistening of the atmospheric column above Ny-Ålesund.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mesoscale eddies play a major role in controlling ocean biogeochemistry. By impacting nutrient availability and water column ventilation, they are of critical importance for oceanic primary production. In the eastern tropical South Pacific Ocean off Peru, where a large and persistent oxygen-deficient zone is present, mesoscale processes have been reported to occur frequently. However, investigations into their biological activity are mostly based on model simulations, and direct measurements of carbon and dinitrogen (N2) fixation are scarce. We examined an open-ocean cyclonic eddy and two anticyclonic mode water eddies: a coastal one and an open-ocean one in the waters off Peru along a section at 16°S in austral summer 2012. Molecular data and bioassay incubations point towards a difference between the active diazotrophic communities present in the cyclonic eddy and the anticyclonic mode water eddies. In the cyclonic eddy, highest rates of N2 fixation were measured in surface waters but no N2 fixation signal was detected at intermediate water depths. In contrast, both anticyclonic mode water eddies showed pronounced maxima in N2 fixation below the euphotic zone as evidenced by rate measurements and geochemical data. N2 fixation and carbon (C) fixation were higher in the young coastal mode water eddy compared to the older offshore mode water eddy. A co-occurrence between N2 fixation and biogenic N2, an indicator for N loss, indicated a link between N loss and N2 fixation in the mode water eddies, which was not observed for the cyclonic eddy. The comparison of two consecutive surveys of the coastal mode water eddy in November 2012 and December 2012 also revealed a reduction in N2 and C fixation at intermediate depths along with a reduction in chlorophyll by half, mirroring an aging effect in this eddy. Our data indicate an important role for anticyclonic mode water eddies in stimulating N2 fixation and thus supplying N offshore.