7 resultados para Merremia

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

ODP Site 1078 situated under the coast of Angola provides the first record of the vegetation history for Angola. The upper 11 m of the core covers the past 30 thousand years, which has been analysed palynologically in decadal to centennial resolution. Alkenone sea surface temperature estimates were analysed in centennial resolution. We studied sea surface temperatures and vegetation development during full glacial, deglacial, and interglacial conditions. During the glacial the vegetation in Angola was very open consisting of grass and heath lands, deserts and semi-deserts, which suggests a cool and dry climate. A change to warmer and more humid conditions is indicated by forest expansion starting in step with the earliest temperature rise in Antarctica, 22 thousand years ago. We infer that around the period of Heinrich Event 1, a northward excursion of the Angola Benguela Front and the Congo Air Boundary resulted in cool sea surface temperatures but rain forest remained present in the northern lowlands of Angola. Rain forest and dry forest area increase 15 thousand years ago. During the Holocene, dry forests and Miombo woodlands expanded. Also in Angola globally recognised climate changes at 8 thousand and 4 thousand years ago had an impact on the vegetation. During the past 2 thousand years, savannah vegetation became dominant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of pollen in marine sediments is used to record vegetation change on the continent. Generally, a good latitudinal correspondence exists between the distribution patterns of pollen in the marine surface sediments and the occurrence of the source plants on the adjacent continent. To investigate land-sea interactions during deglaciation, we compare proxies for continental (pollen assemblages) and marine conditions (alkenone-derived sea surface temperatures) of two high-resolution, radiocarbon-dated sedimentary records from the tropical southeast Atlantic. The southern site is located West of the Cunene River mouth; the northern site is located West of the Angolan Huambe Mountains. It is inferred that the vegetation in Angola developed from Afroalpine and open savannah during the last Glacial maximum (LGM) via Afromontane Podocarpus forest during Heinrich Event 1 (H1), to an early increase of lowland forest after 14.5 ka. The vegetation record indicates dry and cold conditions during the LGM, cool and wet conditions during H1 and a gradual rise in temperature starting well before the Younger Dryas (YD) period. Terrestrial and oceanic climate developments seem largely running parallel, in contrast to the situation ca. 5° further South, where marine and terrestrial developments diverge during the YD. The cool and wet conditions in tropical West Africa, South of the equator, during H1 suggest that low-latitude insolation variation is more important than the slowdown of the thermohaline circulation for the climate in tropical Africa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of pollen in marine sediments is used to record vegetation changes over the past 30,000 years on the adjacent continent. A transect of marine pollen sequences from the mouth of the river Congo (~5°S) to Walvis Bay and Lüderitz (~25°S) shows vegetation changes in Congo, Angola and Namibia from the last glacial period into the Holocene. The comparison of pollen records from different latitudes provides information about the latitudinal shift of open forest and savannahs (Poaceae pollen), the extension of lowland forest (rain forest pollen) and Afromontane forest (Podocarpus pollen), and the position of the desert fringe (pollen of Caryophyllaceae, Chenopodiaceae and Amaranthaceae). High Cyperaceae pollen percentages in sediments from the last glacial period off the mouth of the river Congo suggest the presence of open swamps rather than savannah vegetation in the Congo Basin. Pollen from Restionaceae in combination with Stoebe-type pollen (probably from Elytropappus) indicates a possible northwards extension of winter rain vegetation during the last glacial period. The record of Rhizophora (mangrove) pollen is linked to erosion of the continental shelf and sea-level rise. Pollen influx is highest off river mouths (10-2000 grains year**-1 cm**-2), close to the coast (300-6000 grains year**-1 cm**-2), but is an order of magnitude lower at sites situated far from the continent (<10 grains year**-1 cm**-2).

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The areas of marine pollen deposition are related to the pollen source areas by aeolian and fluvial transport regimes, whereas wind transport is much more important than river transport. Pollen distribution patterns of Pinus, Artemisia, Chenopodiaceae-Amaranthaceae, and Asteraceae Tubuliflorae trace atmospheric transport by the northeast trades. Pollen transport by the African Easterly Jet is reflected in the pollen distribution patterns of Chenopodiaceae-Amaranthaceae, Asteraceae Tubuliflorae, and Mitracarpus. Grass pollen distribution registers the latitudinal extension of Sahel, savannas and dry open forests. Marine pollen distribution patterns of Combretaceae-Melastomataceae, Alchornea, and Elaeis reflect the extension of wooded grasslands and transitional forests. Pollen from the Guinean-Congolian/Zambezian forest and from the Sudanian/Guinean vegetation zones mark the northernmost extension of the tropical rain forest. Rhizophora pollen in marine sediments traces the distribution of mangrove swamps. Only near the continent, pollen of Rhizophora, Mitracarpus, Chenopodiaceae-Amaranthaceae, and pollen from the Sudanian and Guinean vegetation zones are transported by the Upwelling Under Current and the Equatorial Under Current, where those currents act as bottom currents. The distribution of pollen in marine sediments, reflecting the position of major climatic zones (desert, dry tropics, humid tropics), can be used in tracing climatic changes in the past.