4 resultados para Measured topographic landscape
em Publishing Network for Geoscientific
Resumo:
Data compiled within the IMPENSO project. The Impact of ENSO on Sustainable Water Management and the Decision-Making Community at a Rainforest Margin in Indonesia (IMPENSO), http://www.gwdg.de/~impenso, was a German-Indonesian research project (2003-2007) that has studied the impact of ENSO (El Nino-Southern Oscillation) on the water resources and the agricultural production in the PALU RIVER watershed in Central Sulawesi. ENSO is a climate variability that causes serious droughts in Indonesia and other countries of South-East Asia. The last ENSO event occurred in 1997. As in other regions, many farmers in Central Sulawesi suffered from reduced crop yields and lost their livestock. A better prediction of ENSO and the development of coping strategies would help local communities mitigate the impact of ENSO on rural livelihoods and food security. The IMPENSO project deals with the impact of the climate variability ENSO (El Niño Southern Oscillation) on water resource management and the local communities in the Palu River watershed of Central Sulawesi, Indonesia. The project consists of three interrelated sub-projects, which study the local and regional manifestation of ENSO using the Regional Climate Models REMO and GESIMA (Sub-project A), quantify the impact of ENSO on the availability of water for agriculture and other uses, using the distributed hydrological model WaSiM-ETH (Sub-project B), and analyze the socio-economic impact and the policy implications of ENSO on the basis of a production function analysis, a household vulnerability analysis, and a linear programming model (Sub-project C). The models used in the three sub-projects will be integrated to simulate joint scenarios that are defined in collaboration with local stakeholders and are relevant for the design of coping strategies.
Resumo:
From the 12th until the 17th of July 2016, research vessel Maria S. Merian entered the Nordvestfjord of Scorsby Sound (East Greenland) as part of research cruise MSM56, "Ecological chemistry in Arctic fjords". A large variety of chemical and biological parameters of fjord and meltwater were measured during this cruise to characterize biogeochemical fluxes in arctic fjords. The photo documentation described here was a side project. It was started when we were close to the Daugaard-Jensen glacier at the end of the Nordvestfjord and realized that not many people have seen this area before and photos available for scientists are probably rare. These pictures shall help to document climate and landscape changes in a remote area of East Greenland. Pictures were taken with a Panasonic Lumix G6 equipped with either a 14-42 or 45-150 objective (zoom factor available in jpg metadata). Polarizer filters were used on both objectives. The time between taking the pictures and writing down the coordinates was maximally one minute but usually shorter. The uncertainty in position is therefore small as we were steaming slowly most of the time the pictures were taken (i.e. below 5 knots). I assume the uncertainty is in most cases below 200 m radius of the noted position. I did not check the direction I directed the camera to with a compass at the beginning. Hence, the direction that was noted is an approximation based on the navigation map and the positioning of the ship. The uncertainty was probably around +/- 40° but initially (pictures 1-17) perhaps even higher as this documentation was a spontaneous idea and it took some time to get the orientation right. It should be easy, however, to find the location of the mountains and glaciers when being on the respective positions because the mountains have a quite characteristic shape. In a later stage of this documentation, I took pictures from the bridge and used the gyros to approximate the direction the camera was pointed at. Here the uncertainty was much lower (i.e. +/- 20° or better). Directions approximated with the help of gyros have degree values in the overview table. The ship data provided in the MSM56 cruise report will contain all kinds of sensor data from Maria S. Merian sensor setup. This data can also be used to further constrain the position the pictures were taken because the exact time a photo was shot is noted in the metadata of the .jpg photo file. The shipboard clock was set on UTC. It was 57 minutes and 45 seconds behind the time in the camera. For example 12:57:45 on the camera was 12:00:00 UTC on the ship. All pictures provided here can be used for scientific purposes. In case of usage in presentations etc. please acknowledge RV Maria S. Merian (MSM56) and Lennart T. Bach as author. Please inform me and ask for reprint permission in case you want to use the pictures for scientific publications. I would like to thank all participants and the crew of Maria S. Merian Cruise 56 (MSM56, Ecological chemistry in Arctic fjords).
Resumo:
Requirements for space based monitoring of permafrost features had been already defined within the IGOS Cryosphere Theme Report at the start of the IPY in 2007 (IGOS, 2007). The WMO Polar Space Task Group (PSTG, http://www.wmo.int/pages/prog/sat/pstg_en.php) identified the need to review the requirements for permafrost monitoring and to update these requirements in 2013. Relevant surveys with focus on satellite data are already available from the ESA DUE Permafrost User requirements survey (2009), the United States National Research Council (2014) and the ESA - CliC - IPA - GTN -P workshop in February 2014. These reports have been reviewed and specific needs discussed within the community and a white paper submitted to the WMO PSTG. Acquisition requirements for monitoring of especially terrain changes (incl. rock glaciers and coastal erosion) and lakes (extent, ice properties etc.) with respect to current satellite missions have been specified. About 50 locations ('cold spots') where permafrost (Arctic and Antarctic) in situ monitoring has been taking place for many years or where field stations are currently established have been identified. These sites have been proposed to the WMO Polar Space Task Group as focus areas for future monitoring by high resolution satellite data. The specifications of these sites including meta-data on site instrumentation have been published as supplement to the white paper (Bartsch et al. 2014, doi:10.1594/PANGAEA.847003). The representativity of the 'cold spots' around the arctic has been in the following assessed based on a landscape units product which has been developed as part of the FP7 project PAGE21. The ESA DUE Permafrost service has been utilized to produce a pan-arctic database (25km, 2000-2014) comprising Mean Annual Surface Temperature, Annual and summer Amplitude of Surface Temperature, Mean Summer (July-August) Surface Temperature. Surface status (frozen/unfrozen) related products have been also derived from the ESA DUE Permafrost service. This includes the length of unfrozen period, first unfrozen day and first frozen day. In addition, SAR (ENVISAT ASAR GM) statistics as well as topographic parameters have been considered. The circumpolar datasets have been assessed for their redundancy in information content. 12 distinct units could be derived. The landscape units reveal similarities between North Slope Alaska and the region from the Yamal Peninsula to the Yenisei estuary. Northern Canada is characterized by the same landscape units like western Siberia. North-eastern Canada shows similarities to the Laptev coast region. This paper presents the result of this assessment and formulates recommendations for extensions of the in situ monitoring networks and categorizes the sites by satellite data requirements (specifically Sentinels) with respect to the landscape type and related processes.
Resumo:
A continuous time series of annual soil thaw records, extending from 1994 to 2009, is available for comparison with the records of thaw obtained from the Biocomplexity Experiment (BE) for the period 2006-2009. Discontinuous records of thaw at Barrow from wet tundra sites date back to the 1960s. Comparisons between the longer records with the BE observations reveal strong similarities. Records of permafrost temperature, reflecting changes in the annual surface energy exchange, are available from the 1950s for comparison with results from measurement programs begun in 2002. The long-term systematic geocryological investigations at Barrow indicate an increase in permafrost temperature, especially during the last several years. The increase in near-surface permafrost temperature is most pronounced in winter. Marked trends are not apparent in the active-layer record, although subsidence measurements on the North Slope indicate that penetration into the ice-rich layer at the top of permafrost has occurred over the past decade. Active-layer thickness values from the 1960s are generally higher than those from the 1990s, and are very similar to those of the 2000s. Analysis of spatial active-layer observations at representative locations demonstrates significant variations in active-layer thickness between different landscape types, reflecting the influence of vegetation, substrate, microtopography, and, especially, soil moisture. Landscape-specific differences exist in the response of active-layer thickness to climatic forcing. These differences are attributable to the existence of localized controls related to combinations of surface and subsurface characteristics. The geocryological records at Barrow illustrate the importance and effectiveness of sustained, well organized monitoring efforts to document long-term trends.