280 resultados para Mean values

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Between 1999 and 2001, a 724 m long ice core was drilled on Akademii Nauk, the largest glacier on Severnaya Zemlya, Russian Arctic. The drilling site is located near the summit. The core is characterized by high melt-layer content. The melt layers are caused by melting and even by rain during the summer. We present high-resolution data of density, electrical conductivity (dielectrical profiling), stable water isotopes and melt-layer content for the upper 136 m (120 m w.e.) of the ice core. The dating by isotopic cycles and electrical conductivity peak identification suggests that this core section covers approximately the past 275 years. Singularities of volcanogenic and anthropogenic origin provide well-defined additional time markers. Long-term temperatures inferred from 12 year running mean averages of d18O reach their lowest level in the entire record around 1790. Thereafter the d18O values indicate a continuously increasing mean temperature on the Akademii Nauk ice cap until 1935, interrupted only by minor cooling episodes. The 20th century is found to be the warmest period in this record.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reconstruct the latest Paleocene and early Eocene (~57-50 Ma) environmental trends in the Arctic Ocean and focus on the Paleocene-Eocene thermal maximum (PETM) (~55 Ma), using strata recovered from the Lomonosov Ridge by the Integrated Ocean Drilling Program Expedition 302. The Lomonosov Ridge was still partially subaerial during the latest Paleocene and earliest Eocene and gradually subsided during the early Eocene. Organic dinoflagellate cyst (dinocyst) assemblages point to brackish and productive surface waters throughout the latest Paleocene and early Eocene. Dinocyst assemblages are cosmopolitan during this time interval, suggesting warm conditions, which is corroborated by TEX86'-reconstructed temperatures of 15°-18°C. Inorganic geochemistry generally reflects reducing conditions within the sediment and euxinic conditions during the upper lower Eocene. Spectral analysis reveals that the cyclicity, recorded in X-ray fluorescence scanning Fe data from close to Eocene thermal maximum 2 (~53 Ma, presence confirmed by dinocyst stratigraphy), is related to precession. Within the lower part of the PETM, proxy records indicate enhanced weathering, runoff, anoxia, and productivity along with sea level rise. On the basis of total organic carbon content and variations in sediment accumulation rates, excess organic carbon burial in the Arctic Ocean appears to have contributed significantly to the sequestration of injected carbon during the PETM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We quantified postdepositional losses of methane sulfonate (MSA-), nitrate, and chloride at the European Project for Ice Coring in Antarctica (EPICA) drilling site in Dronning Maud Land (DML) (75°S, 0°E). Analyses of four intermediate deep firn cores and 13 snow pits were considered. We found that about 26 ± 13% of the once deposited nitrate and typically 51 ± 20% of MSA- were lost, while for chloride, no significant depletion could be observed in firn older than one year. Assuming a first order exponential decay rate, the characteristic e-folding time for MSA- is 6.4 ± 3 years and 19 ± 6 years for nitrate. It turns out that for nitrate and MSA- the typical mean concentrations representative for the last 100 years were reached after 5.4 and 6.5 years, respectively, indicating that beneath a depth of around 1.2-1.4 m postdepositional losses can be neglected. In the area of investigation, only MSA- concentrations and postdepositional losses showed a distinct dependence on snow accumulation rate. Consequently, MSA- concentrations archived at this site should be significantly dependent on the variability of annual snow accumulation, and we recommend a corresponding correction. With a simple approach, we estimated the partial pressure of the free acids MSA, HNO3, and HCl on the basis of Henry's law assuming that ionic impurities of the bulk ice matrix are localized in a quasi-brine layer (QBL). In contrast to measurements, this approach predicts a nearly complete loss of MSA-, NO3 - , and Cl-.