3 resultados para Mean intensity
em Publishing Network for Geoscientific
Resumo:
The magnetic stability and mean intensity of the natural remanent magnetization (NRM) of Leg 73 sediments (Holes 519 to 523) decreases with the age of the sediment. We demonstrate that these variations are linked with physical and chemical changes in the magnetic grains themselves. Alteration of the magnetic component occurs most rapidly shortly after deposition. A significant magnetic alteration over the topmost few meters of the sediments is thought to be the result of oxidation. The modification of the NRM characteristics through the partial dissolution of the carbonate is largely accounted for by the effects of concentraion of the magnetic minerals. We apply the techniques of rock-magnetism and X-ray fluorescence analysis to clarify the physical and chemical mechanisms that affect the magnetic character of the sediment.
Resumo:
Using shells collected from a sediment trap series in the Madeira Basin, we investigate the effects of seasonal variation of temperature, productivity, and optimum growth conditions on calcification in three species of planktonic Foraminifera. The series covers an entire seasonal cycle and reflects conditions at the edge of the distribution of the studied species, manifesting more suitable growth conditions during different parts of the year. The seasonal variation in seawater carbonate saturation at the studied site is negligible compared to other oceanic regions, allowing us to assess the effect of parameters other than carbonate saturation. Shell calcification is quantified using weight and size of individual shells. The size-weight scaling within each species is robust against changes in environmental parameters, but differs among species. An analysis of the variation in calcification intensity (size-normalized weight) reveals species-specific response patterns. In Globigerinoides ruber (white) and Globigerinoides elongatus, calcification intensity is correlated with temperature (positive) and productivity (negative), whilst in Globigerina bulloides no environmental forcing is observed. The size-weight scaling, calcification intensity, and response of calcification intensity to environmental change differed between G. ruber (white) and G. elongatus, implying that patterns extracted from pooled analyses of these species may reflect their changing proportions in the samples. Using shell flux as a measure of optimum growth conditions, we observe significant positive correlation with calcification intensity in G. elongatus, but negative correlation in G. bulloides. The lack of a consistent response of calcification intensity to optimum growth conditions is mirrored by the results of shell size analyses. We conclude that calcification intensity in planktonic Foraminifera is affected by factors other than carbonate saturation. These factors include temperature, productivity, and optimum growth conditions, but the strength and sign of the relationships differ among species, potentially complicating interpretations of calcification data from the fossil record.