358 resultados para Maximilian, Emperor of Mexico, 1832-1867.
em Publishing Network for Geoscientific
Resumo:
A relatively extended Oligocene pelagic sequence with good to medium recovery, drilled during DSDP Leg 77 in the Gulf of Mexico, yielded rich and well diversified planktonic foraminiferal faunas. Planktonic foraminifera recorded in Hole 538A span the interval from Zone P19 through P22. Evolutionary lineages were observed among the globoquadrinids, the globigerinitids, and the "Globigerina" ciperoensis and Globigerinoides primordius groups. Quantitative analysis of planktonic foraminiferal assemblages shows that faunas fluctuate in abundance and species diversity throughout the sequence. A few of these fluctuations that could be related to selective dissolution are mainly confined to the early-mid Oligocene. A climatic curve was constructed using as warmer indicators, Turborotalia pseudoampliapertura, Globoquadrina tripartita, Dentoglobigerina globularis, Dentoglobigerina baroemoenensis,. "Globigerina" ciperoensis and Globigerinoides groups, and Cassigerinella chipolensis; and as coller indicators, Catapsydrax spp., Globorotaloides spp., Subbotina angiporoides group, Globigerina s. str., and the tenuitellides. Three major intervals are identifiable in the climatic curve: Interval 1 (lower) up to Zone P20 predominantly cooler: Interval 2 (intermediate) up to the upper part of Zone P21a with warm and cool fluctuations: and lnterval 3 (upper), warmer, with a large positive peak, due to abundant "G." angulisuturalis, at the beginning of Zone P21b with recooling midway in Zone P22. In Intervals 1 and 2 planktonic foraminiferal faunas are dominated by temperate forms. Interpretation of planktonic foraminiferal data suggests that cooler water conditions characterize the early-mid Oligocene: during the mid Oligocene (most of Zone P21a) water masses exhibit peculiar characteristics transitional to the warmer waters prevailing during the late Oligocene. Warmer conditions were not definitely settled in Zone P22, however, as indicated by the cooler episode following the warmest peak. These climatic trends are inconsistent with those inferred from oxygen isotopes except at small scale. In fact, oxygen isotope values for Oligocene Atlantic Ocean are too heavy (thus too cool) in comparison with the high abundance and diversity of warm taxa, expecially in Zone P22. When values are lighter (warmer), as in Zone P19 abundance and diversity of warm indices are too low. To explain such a cool isotope values in presence of highly diversified and abundant warm planktonic foraminifera, we suggest (1) that the oxygen isotope ratio used for estimating Oligocene paleotemperatures might be 1? heavier than Eocene values and further increased for the late Oligocene. This hypothesis implies the presence of a relatively extended ice cap in Antarctica in the early and mid Oligocene, and probably an increase in ice volume during the late Oligocenc: (2) heavier isotope values might be related to an increase in salinity, or (3) by a combination of both ice cap and increase in salinity.
Resumo:
At marine seeps, methane is microbially oxidized resulting in the precipitation of carbonates close to the seafloor. Methane oxidation leads to sulfate depletion in sediment pore water, which induces a change in redox conditions. Rare earth element (REE) patterns of authigenic carbonate phases collected from modern seeps of the Gulf of Mexico, the Black Sea, and the Congo Fan were analyzed. Different carbonate minerals including aragonite and calcite with different crystal habits have been selected for analysis. Total REE content (SumREE) of seep carbonates varies widely, from 0.1 ppm to 42.5 ppm, but a common trend is that the SumREE in microcrystalline phases is higher than that of the associated later phases including micospar, sparite and blocky cement, suggesting that SumREE may be a function of diagenesis. The shale-normalized REE patterns of the seep carbonates often show different Ce anomalies even in samples from a specific site, suggesting that the formation conditions of seep carbonates are variable and complex. Overall, our results show that apart from anoxic, oxic conditions are at least temporarily common in seep environments.
Resumo:
Gas hydrates were recovered from eight sites on the Louisiana slope of the Gulf of Mexico. The gas hydrate discoveries ranged in water depths from 530 to 2400 m occurring as small to medium sized (0.5-50 mm) nodules, interspersed layers (1-10 mm thick) or as solid masses (> 150 mm thick). The hydrates have gas:fluid ratios as high as 170:1 at STP, C1/(C2 + C3) ratios ranging from 1.9 to > 1000 and d13C ratios from -43 to -71 per mil. Thermogenic gas hydrates are associated with oil-stained cores containing up to 7% extractable oil exhibiting moderate to severe biodegradation. Biogenic gas hydrates are also associated with elevated bitumen levels (10-700 ppm). All gas hydrate associated cores contain high percentages (up to 65%) of authigenic, isotopically light carbonate. The hydrate-containing cores are associated with seismic "wipeout" zones indicative of gassy sediments. Collapsed structures, diapiric crests, or deep faults on the flanks of diapirs appear to be the sites of the shallow hydrates.
Resumo:
Changing global climate due to anthropogenic emissions of CO2 are driving rapid changes in the physical and chemical environment of the oceans via warming, deoxygenation, and acidification. These changes may threaten the persistence of species and populations across a range of latitudes and depths, including species that support diverse biological communities that in turn provide ecological stability and support commercial interests. Worldwide, but particularly in the North Atlantic and deep Gulf of Mexico, Lophelia pertusa forms expansive reefs that support biological communities whose diversity rivals that of tropical coral reefs. In this study, L. pertusa colonies were collected from the Viosca Knoll region in the Gulf of Mexico (390 to 450 m depth), genotyped using microsatellite markers, and exposed to a series of treatments testing survivorship responses to acidification, warming, and deoxygenation. All coral nubbins survived the acidification scenarios tested, between pH of 7.67 and 7.90 and aragonite saturation states of 0.92 and 1.47. However, calcification generally declined with respect to pH, though a disparate response was evident where select individuals net calcified and others exhibited net dissolution near a saturation state of 1. Warming and deoxygenation both had negative effects on survivorship, with up to 100% mortality observed at temperatures above 14ºC and oxygen concentrations of approximately 1.5 ml·l-1. These results suggest that, over the short-term, climate change and OA may negatively impact L. pertusa in the Gulf of Mexico, though the potential for acclimation and the effects of genetic background should be considered in future research.
Resumo:
A 160 m mostly turbiditic late Pleistocene sediment sequence (IODP Expedition 308, Hole U1319A) from the Brazos-Trinity intraslope basin system off Texas was investigated with paleo- and rock magnetic methods. Numerous layers depleted in iron oxides and enriched by the ferrimagnetic iron-sulfide mineral greigite (Fe3S4) were detected by diagnostic magnetic properties. From the distribution of these layers, their stratigraphic context and the present geochemical zonation, we develop two conceptual reaction models of greigite formation in non-steady depositional environments. The "sulfidization model" predicts single or twin greigite layers by incomplete transformation of iron monosulfides with polysulfides around the sulfate methane transition (SMT). The "oxidation model" explains greigite formation by partial oxidation of iron monosulfides near the iron redox boundary during periods of downward shifting oxidation fronts. The stratigraphic record provides evidence that both these greigite formation processes act here at typical depths of about 12-14 mbsf and 3-4 mbsf. Numerous "fossil" greigite layers most likely preserved by rapid upward shifts of the redox zonation denote past SMT and sea floor positions characterized by stagnant hemipelagic sedimentation conditions. Six diagenetic stages from a pristine magnetite-dominated to a fully greigite-dominated magnetic mineralogy were differentiated by combination of various hysteresis and remanence parameters.
Resumo:
Two newly developed coring devices, the Multi-Autoclave-Corer and the Dynamic Autoclave Piston Corer were deployed in shallow gas hydrate-bearing sediments in the northern Gulf of Mexico during research cruise SO174 (Oct-Nov 2003). For the first time, they enable the retrieval of near-surface sediment cores under ambient pressure. This enables the determination of in situ methane concentrations and amounts of gas hydrate in sediment depths where bottom water temperature and pressure changes most strongly influence gas/hydrate relationships. At seep sites of GC185 (Bush Hill) and the newly discovered sites at GC415, we determined the volume of low-weight hydrocarbons (C1 through C5) from nine pressurized cores via controlled degassing. The resulting in situ methane concentrations vary by two orders of magnitudes between 0.031 and 0.985 mol kg**-1 pore water below the zone of sulfate depletion. This includes dissolved, free, and hydrate-bound CH4. Combined with results from conventional cores, this establishes a variability of methane concentrations in close proximity to seep sites of five orders of magnitude. In total four out of nine pressure cores had CH4 concentrations above equilibrium with gas hydrates. Two of them contain gas hydrate volumes of 15% (GC185) and 18% (GC415) of pore space. The measurements prove that the highest methane concentrations are not necessarily related to the highest advection rates. Brine advection inhibits gas hydrate stability a few centimeters below the sediment surface at the depth of anaerobic oxidation of methane and thus inhibits the storage of enhanced methane volumes. Here, computerized tomography (CT) of the pressure cores detected small amounts of free gas. This finding has major implications for methane distribution, possible consumption, and escape into the bottom water in fluid flow systems related to halokinesis.
Resumo:
Following the discovery of asphalt volcanism in the Campeche Knolls a research cruise was carried out in 2006 to unravel the nature of the asphalt deposits at Chapopote. The novel results support the concept that the asphalt deposits at the seafloor in 3000 m of water depth originate from the seepage of heavy petroleum with a density slightly greater than water. The released petroleum forms characteristic flow structures at the seafloor with surfaces that are 'ropy' or 'rough' similar to magmatic lava flows. The surface structures indicate that the viscosity of the heavy petroleum rapidly increases after extrusion due to loss of volatiles. Consequently, the heavy petroleum forms the observed asphalt deposit and solidifies. Detailed survey with a remotely operated vehicle revealed that the asphalts are subject to sequential alterations: e.g. volume reduction leading to the formation of visible cracks in the asphalt surface, followed by fragmentation of the entire deposit. While relatively fresh asphalt samples were gooey and sticky, older, fragmented pieces were found to be brittle without residual stickiness. Furthermore, there is evidence for petroleum seepage from below the asphalt deposits, leading to local up-doming and, sometimes, to whip-shaped extrusions. Extensive mapping by TV-guided tools of Chapopote Asphalt Volcano indicates that the main asphalt deposits occur at the south-western rim that borders a central, crater-like depression. The most recent asphalt deposit at Chapopote is the main asphalt field covering an area of ~2000 m**2. Asphalt volcanism is distinct from oil and gas seepage previously described in the Gulf of Mexico and elsewhere because it is characterized by episodic intrusions of semi-solid hydrocarbons that spread laterally over a substantial area and produce structures with significant vertical relief. As Chapopote occurs at the crest of a salt structure it is inferred that asphalt volcanism is a secondary result of salt tectonism.
Resumo:
Gas hydrate samples from various locations in the Gulf of Mexico (GOM) differ considerably in their microstructure. Distinct microstructure characteristics coincide with discrete crystallographic structures, gas compositions and calculated thermodynamic stabilities. The crystallographic structures were established by X-ray diffraction, using both conventional X-ray sources and high-energy synchrotron radiation. The microstructures were examined by cryo-stage Field-Emission Scanning Electron Microscopy (FE-SEM). Good sample preservation was warranted by the low ice fractions shown from quantitative phase analyses. Gas hydrate structure II samples from the Green Canyon in the northern GOM had methane concentrations of 70-80% and up to 30% of C2-C5 of measured hydrocarbons. Hydrocarbons in the crystallographic structure I hydrate from the Chapopote asphalt volcano in the southern GOM was comprised of more than 98% methane. Fairly different microstructures were identified for those different hydrates: Pores measuring 200-400 nm in diameter were present in structure I gas hydrate samples; no such pores but dense crystal surfaces instead were discovered in structure II gas hydrate. The stability of the hydrate samples is discussed regarding gas composition, crystallographic structure and microstructure. Electron microscopic observations showed evidence of gas hydrate and liquid oil co-occurrence on a micrometer scale. That demonstrates that oil has direct contact to gas hydrates when it diffuses through a hydrate matrix.
Resumo:
Pore waters were analyzed from 6 holes drilled from M.V. "Eureka" as a part of the Shell Oil Co. deeper offshore study. The holes were drilled in water depths of 600-3000 ft. (approximately 180-550 m) and penetrated up to 1000 ft. (300 m) of Pliocene-Recent clayey sediments. Salt and anhydrite caprock was encountered in one diapiric structure on the continental slope. Samples from holes drilled near diapiric structures showed systematic increases of pore-water salinity with depth, suggestive of salt diffusion from underlying salt plugs. Anomalous concentrations of K and Br indicate that at least one plug contains late-stage evaporite minerals. Salinities approaching halite saturation were observed. Samples from holes away from diapiric structures showed little change in pore-water chemistry, except for loss of SO4 and other variations attributable to early-stage diagenetic reactions with enclosing sediments. Thus, increased salt concentrations in even shallow sediments from this part of the Gulf appear to provide an indicator of salt masses at depth.
Resumo:
Sediment samples collected at DSDP Leg 96 Mississippi Fan Sites 615, 616, 620, 621, and 623, Orca Basin Site 618, and Pigmy Basin Site 619 were analyzed for 22 major, minor, and trace elements. This study was undertaken to document the downhole variability in inorganic geochemistry between sites. The mineralogy of the clays, including those from Sites 614, 617, and 622 on the fan, was determined by X-ray diffraction to define the principal clay minerals present at the sites, examine any downhole trends in clay mineralogy, and aid in the interpretation of the geochemical signature of the sediments. Clay mineral composition at all the sites is smectite:illite:chlorite:kaolinite in the approximate percentage ratio 50:20:20:10. Geochemical results indicate only slight variation between and within the sites, with the exception of a discrete unit of carbonates that occurs near the bottom of Site 615. Variation in the major, minor, and trace element composition can be explained by a change in the relative abundance of quartz, clay minerals, and carbonates.
Resumo:
Hydrocarbon seepage is a widespread process at the continental margins of the Gulf of Mexico. We used a multidisciplinary approach, including multibeam mapping and visual seafloor observations with different underwater vehicles to study the extent and character of complex hydrocarbon seepage in the Bay of Campeche, southern Gulf of Mexico. Our observations showed that seafloor asphalt deposits previously only known from the Chapopote Knoll also occur at numerous other knolls and ridges in water depths from 1230 to 3150 m. In particular the deeper sites (Chapopopte and Mictlan knolls) were characterized by asphalt deposits accompanied by extrusion of liquid oil in form of whips or sheets, and in some places (Tsanyao Yang, Mictlan, and Chapopote knolls) by gas emission and the presence of gas hydrates in addition. Molecular and stable carbon isotopic compositions of gaseous hydrocarbons suggest their primarily thermogenic origin. Relatively fresh asphalt structures were settled by chemosynthetic communities including bacterial mats and vestimentiferan tube worms, whereas older flows appeared largely inert and devoid of corals and anemones at the deep sites. The gas hydrates at Tsanyao Yang and Mictlan Knolls were covered by a 5-to-10 cm-thick reaction zone composed of authigenic carbonates, detritus, and microbial mats, and were densely colonized by 1-2 m-long tube worms, bivalves, snails, and shrimps. This study increased knowledge on the occurrences and dimensions of asphalt fields and associated gas hydrates at the Campeche Knolls. The extent of all discovered seepage structure areas indicates that emission of complex hydrocarbons is a widespread, thus important feature of the southern Gulf of Mexico.