475 resultados para Mass balance in the Earth
em Publishing Network for Geoscientific
Resumo:
The main characteristics of the Vernagtferner mass balance are sumarized in the table below. The mass balance years from 1964/65 to 2003/2004 are listed. The table includes the total area of the glacier (basis for the calculations), the equilibrium line altitude (ELA), percentage of the accumulation area in relation to the total area (AAR) and the specific net mass balance in mm w.e. (water equivalent) per year. It becomes clear that, after a rather minor growth period in the mid 1970's, the glacier continually lost mass since the beginning of the 1980's. Besides that, a clear increase of mass balance years with extreme mass losses could be observed in the last decade. The "glacier-friendly" summer with a well-balanced mass balance in 1999 could only interrupt the series of years with extreme mass losses, but this means no change in the trend. The minor mass loss in 1999 was caused by a winter snow cover above average, which prevented the glacier from becoming snow free over large areas and thus resulted in a lower ice melt. Although real summer conditions in 2000 were mainly restricted to August and produced a snow free area only slightly larger than in 1999, there have been further ice losses. This trend of negative mass balance continued also in the years 2001 and 2002. Nevertheless, the losses are moderate because a smaller part of the glacier became ice free until autumn (appr. 50 %). The summer 2003 caused a loss of ice in a dimension never seen since the beginning of the scientific investigations. This resulted from a combination of different factors: after only a moderate winter snowcover the glacier became snow free very early. For the first time the ablation area spanned over the entire glacier (blue fields in the mass balance tables!). Only one short snowfall event interrupted the ablation period, which lasted twice as long as in the years of large losses in the 1990's. The extreme mass loss in 2003 will also influence the mass balance in the following year 2004. The graphical representation of the elevation distribution of the specific mass balance together with the absolute mass balance can be found individually for each year by choosing one of the mass balance values from the table. These diagrams also include the area-height-distribution of the glacier and the ablation area. A tabular version of the numeric values in dependence of the elevation, provided separately for the accumulation area, the ablation area and the total glacier, can be found in colums "Persistent Identifier". The tables include the results for three different parts of the glacier and for the total glacier.
Resumo:
A 21-year record is presented of surface mass balance measurements along the K-transect. The series covers the period 1990-2011. Data are available at 8 sites along a transect over an altitude range of 390 - 1850 m at approximately 67° N in West Greenland. The surface mass balance gradient is on average 3.8 x 10**-3 m w.e./m, and the mean equilibrium line altitude is 1553 m a.s.l. Only the lower 3 sites within 10 km of the margin experience a significant increasing trend in the ablation over the entire period.
Resumo:
We re-evaluate the Greenland mass balance for the recent period using low-pass Independent Component Analysis (ICA) post-processing of the Level-2 GRACE data (2002-2010) from different official providers (UTCSR, JPL, GFZ) and confirm the present important ice mass loss in the range of -70 and -90 Gt/y of this ice sheet, due to negative contributions of the glaciers on the east coast. We highlight the high interannual variability of mass variations of the Greenland Ice Sheet (GrIS), especially the recent deceleration of ice loss in 2009-2010, once seasonal cycles are robustly removed by Seasonal Trend Loess (STL) decomposition. Interannual variability leads to varying trend estimates depending on the considered time span. Correction of post-glacial rebound effects on ice mass trend estimates represents no more than 8 Gt/y over the whole ice sheet. We also investigate possible climatic causes that can explain these ice mass interannual variations, as strong correlations between GRACE-based mass balance and atmosphere/ocean parallels are established: (1) changes in snow accumulation, and (2) the influence of inputs of warm ocean water that periodically accelerate the calving of glaciers in coastal regions and, feed-back effects of coastal water cooling by fresh currents from glaciers melting. These results suggest that the Greenland mass balance is driven by coastal sea surface temperature at time scales shorter than accumulation.