2 resultados para Masculinity in performance

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sensitivity of marine crustaceans to anthropogenic CO2 emissions and the associated acidification of the oceans may be less than that of other, especially lower, invertebrates. However, effects on critical transition phases or carry-over effects between life stages have not comprehensively been explored. Here we report the impact of elevated seawater PCO2 values (3100 µatm) on Hyas araneus during the last 2 weeks of their embryonic development (pre-hatching phase) and during development while in the consecutive zoea I and zoea II larval stages (post-hatching phase). We measured oxygen consumption, dry weight, developmental time and mortality in zoea I to assess changes in performance. Feeding rates and survival under starvation were investigated at different temperatures to detect differences in thermal sensitivities of zoea I and zoea II larvae depending on pre-hatch history. When embryos were pre-exposed to elevated PCO2 during maternal care, mortality increased about 60% under continued CO2 exposure during the zoea I phase. The larvae that moulted into zoea II, displayed a developmental delay by about 20 days compared to larvae exposed to control PCO2 during embryonic and zoeal phases. Elevated PCO2 caused a reduction in zoea I dry weight and feeding rates, while survival of the starved larvae was not affected by the seawater CO2 concentration. In conclusion, CO2 effects on egg masses under maternal care carried over to the first larval stages of crustaceans and reduced their survival and development to levels below those previously reported in studies exclusively focussing on acute PCO2 effects on the larval stages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The distribution, abundance, behaviour, and morphology of marine species is affected by spatial variability in the wave environment. Maps of wave metrics (e.g. significant wave height Hs, peak energy wave period Tp, and benthic wave orbital velocity URMS) are therefore useful for predictive ecological models of marine species and ecosystems. A number of techniques are available to generate maps of wave metrics, with varying levels of complexity in terms of input data requirements, operator knowledge, and computation time. Relatively simple "fetch-based" models are generated using geographic information system (GIS) layers of bathymetry and dominant wind speed and direction. More complex, but computationally expensive, "process-based" models are generated using numerical models such as the Simulating Waves Nearshore (SWAN) model. We generated maps of wave metrics based on both fetch-based and process-based models and asked whether predictive performance in models of benthic marine habitats differed. Predictive models of seagrass distribution for Moreton Bay, Southeast Queensland, and Lizard Island, Great Barrier Reef, Australia, were generated using maps based on each type of wave model. For Lizard Island, performance of the process-based wave maps was significantly better for describing the presence of seagrass, based on Hs, Tp, and URMS. Conversely, for the predictive model of seagrass in Moreton Bay, based on benthic light availability and Hs, there was no difference in performance using the maps of the different wave metrics. For predictive models where wave metrics are the dominant factor determining ecological processes it is recommended that process-based models be used. Our results suggest that for models where wave metrics provide secondarily useful information, either fetch- or process-based models may be equally useful.