36 resultados para Martin, Gregory, d.1582.

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

87Sr/86Sr data of belemnites are presented from a Middle Jurassic-Early Cretaceous succession from the Falkland Plateau (Deep Sea Drilling Project Sites 511 and 330) that was deposited in a periodically anoxic, semi-enclosed shallow water basin. Diagenetically screened strontium-isotope values of 0.706789 rise to 0.707044 before increasing sharply to 0.707428 in the uppermost part of the sampled succession. Comparison with published strontium calibration curves suggests that the oldest samples were Callovian to Oxfordian in age, whilst the remainder of the Jurassic part of the succession consisted of Kimmeridgian and Early Tithonian age sediments. The nannofossil, dinoflagellate and molluscan assemblages provide comparable age determinations. The strontium-isotope analysis of the youngest belemnites points to a Hauterivian-Barremian age, whilst age interpretations based upon the fauna provide a wide age range from the Barremian to early Albian. Strontium-isotope stratigraphy of this succession hence offers increased age resolution providing data regarding the timing of episodes of bottom water anoxia which have been recorded throughout the South Atlantic Basin. Well-preserved belemnite specimens display an oxygen-isotope range between +0.08 and -2.22? (PDB, Peedee belemnite international standard) and a carbon-isotope range from +2.35 to -1.33? (PDB). Delta13C values become increasingly negative through the Late Jurassic-Early Cretaceous and in concert with the 87Sr/86Sr data reveal a trend that could be accounted for by increasing levels of weathering and erosion. The oxygen-isotope data if interpreted in terms of palaeotemperature are consistent with warm palaeotemperatures in the Kimmeridgian and slightly cooler temperatures for the Tithonian and Early Cretaceous parts of the succession. The proposed relative Kimmeridgian warmth (based upon strontium-isotope age assignments) is thus in good agreement with other published palaeotemperature records.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen and carbon isotopic records have been developed for the Cenozoic carbonate oozes of Sites 752, 754, 756, and 757 based on the analysis of monospecific benthic foraminifers. The intent of this report is to provide a basic isotopic stratigraphy for use in other paleoceanographic studies. The oxygen isotope record displays the enrichments associated with cooling or ice volume buildup at the Eocene/Oligocene boundary, in the middle Miocene, and in the upper Pliocene. The carbon isotopic record contains the Chron 16 enrichment in the lower Miocene and the Chron 6 depletion in the uppermost Miocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen and carbon isotopes have been determined from Late Jurassic (Oxfordian-Tithonian) belemnites and inoceramid bivalves from two Deep Sea Drilling Project (DSDP) sites located on the Falkland Plateau. Mean belemnite delta18O values, derived from well preserved skeletal material, were -1.29? from DSDP site 330 and -1.45? from DSDP site 511. Assuming a seawater SMOW value of -1.0?, mean palaeotemperatures calculated from the oxygen isotopic composition are 17.2°C and 17.9°C, respectively. The inoceramid bivalves yielded much lighter delta18O values (mean -3.58?). Petrographic and geochemical evidence points to the inoceramid bivalves being altered by diagenesis which accordingly accounts for the observed differences in isotopic values. "Vital effects" or the importation of belemnites or inocerarnids from another area, are considered not to account for the observed isotopic trends. The palaeotemperatures interpreted from the belemnites are significantly warmer than other recent estimates of Late Jurassic temperature (from oxygen isotope studies and climate model predictions) from similar southern palaeolatitudes. We suspect our apparent warmer temperatures are because of a combination of increased freshwater runoff depleting surface waters with respect to delta18O and related to the semi-enclosed nature of the depositional basin retaining warmth, relative to the open ocean of similar latitudes.