14 resultados para Marshes.
em Publishing Network for Geoscientific
Resumo:
Knots arrive on Ellesmere Island in late May or early June. At Hazen Camp small flocks were present on 3 June 1966, but the main influx occurred 5 June when many flocks were seen ranging in size from 6 to 60 individuals. The sexes appeared to arrive together, but the manner of pair-formation was not determined. By 7 June pairs were distributed over the tundra with large feeding flocks forming at snowfree wet marshy areas. Most nests were on Dryas-hummocked slopes and tundra, either dry or moist, with some on clay plains and summits in a mixed Dryas and Salix vegetation. A census area of 240 ha supported at least 3 breeding pairs, and possibly 5; the total number of pairs breeding in the Hazen Camp study area was estimated to be about 25 (1.09 pairs/km**2). Egg-laying (4 nests) extended from 15 to 28 June, with 3 of the 4 sets completed between 20 and 23 June. Both sexes incubated, one of the pair more regularly than the other. The song-flight display of the male was performed most frequently during egglaying and incubation. The incubation period of the last egg in one clutch was established as being between 21.5 and 22.4 days. Four nests hatched between 12 and 20 July, and the hatching period of the entire clutch was less than 24 hours. Four of 7 nests (57 %) survived and egg survival (53 %) was low. Families left the nesting area so on after hatching, concentrating at ponds where food was readily available for the young. Both adults attended the young during the pre-fledging period, but the females apparently departed before the young had hedged. Males left once the young could fly and the adult fall migration was complete by early August. Most 01 the young departed belore mid-August. Fall migration is complete by late August or early September. The breeding season appears to be timed to peak load supply for the young. Adult Chironomidae emergence was highest between 3 and 17 July, the period during which most successful nests hatched. The increasing scarcity of adult insects for the young after mid-July was offset by family movements over the tundra and the early departure of half the adult population. Food also seemed to influence the distribution of breeding pairs aver the tundra, restricting them to the general vicinity of marshes, streams, and ponds where food is most available when the young hatch. Territoriality in the Knot appears to be closely associated with the protection of the nest against predators and has at least a local effect in regulating the number of breeding pairs. Plant material was important in the diet of adult Knots throughout the summer and the primary food from the time of arrival until mid-June. After mid-June the percentage of animal matter increased as dipterous insects became available (especially adult Chironomidae), but plant materials continued to constitute a large part of the diet, usually more than 50 %. The food of the young before fledging consisted principally of adult chironomids.
Resumo:
Two marshes near Muscotah and Arrington, Atchison County, northeastern Kansas, yielded a pollen sequence covering the last 25,000 yrs of vegetation development. The earliest pollen spectra are comparable with surface pollen spectra from southern Saskatchewan and southeastern Manitoba and might indicate a rather open vegetation but with some pine, spruce, and birch as the most important tree species, with local stands of alder and willow. This type of vegetation changed about 23,000 yrs ago to a spruce forest, which prevailed in the region until at least 15,000 yrs ago. Because of a hiatus, the vegetation changes resulting in the spread of a mixed deciduous forest and prairie, which was present in the region from 11,000 to 9,000 yrs ago, remain unknown. Prairie vegetation, with perhaps a few trees along the valleys, covered the region until about 5,000 yrs ago, when a re-expansion of deciduous trees began in the lowlands.
Resumo:
Pollen analyses have been proven to possess the possibility to decipher rapid vegetational and climate shifts in Neogene sedimentary records. Herein, a c. 21-kyr-long transgression-regression cycle from the Lower Austrian locality Stetten is analysed in detail to evaluate climatic benchmarks for the early phase of the Middle Miocene Climate Optimum and to estimate the pace of environmental change. Based on the Coexistence Approach, a very clear signal of seasonality can be reconstructed. A warm and wet summer season with c. 204-236 mm precipitation during the wettest month was opposed by a rather dry winter season with precipitation of c. 9-24 mm during the driest month. The mean annual temperature ranged between 15.7 and 20.8 °C, with about 9.6-13.3 °C during the cold season and 24.7-27.9 °C during the warmest month. In contrast, today's climate of this area, with an annual temperature of 9.8 °C and 660 mm rainfall, is characterized by the winter season (mean temperature: -1.4 °C, mean precipitation: 39 mm) and a summer mean temperature of 19.9 °C (mean precipitation: 84 mm). Different modes of environmental shifts shaped the composition of the vegetation. Within few millennia, marshes and salt marshes with abundant Cyperaceae rapidly graded into Taxodiaceae swamps. This quick but gradual process was interrupted by swift marine ingressions which took place on a decadal to centennial scale. The transgression is accompanied by blooms of dinoflagellates and of the green alga Prasinophyta and an increase in Abies and Picea. Afterwards, the retreat of the sea and the progradation of estuarine and wetland settings were a gradual progress again. Despite a clear sedimentological cyclicity, which is related to the 21-kyr precessional forcing, the climate data show little variation. This missing pattern might be due to the buffering of the precessional-related climate signal by the subtropical vegetation. Another explanation could be the method-inherent broad range of climate-parameter estimates that could cover small scale climatic changes.
Resumo:
Study sites. Samples of surface water were taken from 4 coastal lagoons on the Yucatan Peninsula in Mexico: Celestun (20° 45' N - 90° 22' W), Chelem (21° 15' N - 89° 45' W), Rosada Lagoon (21º 19' N - 89º 19' W), and Sabancuy Estuary (18° 58' N - 91° 12' W). The sampling was performed from august to October of 2011 (Chelem 08/24; Laguna Rosada 09/06; Celestún 09/28; Sabancuy 10/25). The sampling was random without replacement and 10 samples of surface water were collected along a transect parallel to the coastal axis. Samples were deposited in sterile plastic bottles and conserved in refrigeration at 4°C. All samples were processed within 24 hours after sampling. According to the Mexican laws and regulations no permissions are required to obtain water and sediment samples from open public areas. Analysis of environmental and physicochemical parameters. Determinations of the environmental parameters were performed with a Hach 5465000 model 156 multi-parameter measuring instrument. The Lorenzen method was used to determine chlorophyll-a (21) with 90% acetone and the concentration was calculated according to the formula: Chla= 27.63 (OD665o - OD665a)(VA)/VM x L Where, OD665o: absorbance at 665 nm before acidification; OD665a: absorbance at 665 nm after acidification; VA: volume (ml) of acetone for extraction; VM: volume (ml) of filtered water; L: length (cm) of the photometric cell. Determinations of the physicochemical parameters (silicates, phosphates, nitrates, nitrites and ammonia) were performed using the spectrophotometric techniques described and modified by Strickland and Parsons (1972).
Resumo:
Coastal communities around the world face increasing risk from flooding as a result of rising sea level, increasing storminess, and land subsidence. Salt marshes can act as natural buffer zones, providing protection from waves during storms. However, the effectiveness of marshes in protecting the coastline during extreme events when water levels and waves are highest is poorly understood. Here, we experimentally assess wave dissipation under storm surge conditions in a 300-m-long wave flume that contains a transplanted section of natural salt marsh. We find that the presence of marsh vegetation causes considerable wave attenuation, even when water levels and waves are high. From a comparison with experiments without vegetation, we estimate that up to 60% of observed wave reduction is attributed to vegetation. We also find that although waves progressively flatten and break vegetation stems and thereby reduce dissipation, the marsh substrate remained remarkably stable and resistant to surface erosion under all conditions.The effectiveness of storm wave dissipation and the resilience of tidal marshes even at extreme conditions suggest that salt marsh ecosystems can be a valuable component of coastal protection schemes.
Resumo:
Visual traces of iron reduction and oxidation are linked to the redox status of soils and have been used to characterise the quality of agricultural soils.We tested whether this feature could also be used to explain the spatial pattern of the natural vegetation of tidal habitats. If so, an easy assessment of the effect of rising sea level on tidal ecosystems would be possible. Our study was conducted at the salt marshes of the northern lagoon of Venice, which are strongly threatened by erosion and rising sea level and are part of the world heritage 'Venice and its lagoon'. We analysed the abundance of plant species at 255 sampling points along a land-sea gradient. In addition, we surveyed the redox morphology (presence/absence of red iron oxide mottles in the greyish topsoil horizons) of the soils and the presence of disturbances. We used indicator species analysis, correlation trees and multivariate regression trees to analyse relations between soil properties and plant species distribution. Plant species with known sensitivity to anaerobic conditions (e.g. Halimione portulacoides) were identified as indicators for oxic soils (showing iron oxide mottles within a greyish soil matrix). Plant species that tolerate a low redox potential (e.g. Spartina maritima) were identified as indicators for anoxic soils (greyish matrix without oxide mottles). Correlation trees and multivariate regression trees indicate the dominant role of the redox morphology of the soils in plant species distribution. In addition, the distance from the mainland and the presence of disturbances were identified as tree-splitting variables. The small-scale variation of oxygen availability plays a key role for the biodiversity of salt marsh ecosystems. Our results suggest that the redox morphology of salt marsh soils indicates the plant availability of oxygen. Thus, the consideration of this indicator may enable an understanding of the heterogeneity of biological processes in oxygen-limited systems and may be a sensitive and easy-to-use tool to assess human impacts on salt marsh ecosystems.
Resumo:
Rivers represent a transition zone between terrestric and aquatic environments, and between methane rich and methane poor environments. The Elbe River is one of the important rivers draining into the North Sea and with the Elbe potentially high amounts of methane could be imported into the water column of the North Sea. Twelve cruises from October 2010 until June 2013 were conducted from Hamburg towards the Elbe mouth at Cuxhaven. The dynamic of methane concentration in the water column and its consumption via methane oxidation was measured. In addition, physico-chemical parameters were used to estimate their influence on the methanotrophic activity. We observed high methane concentrations at the stations in the area of Hamburg harbor ("inner estuary") and about 10 times lower concentrations in the outer estuary (median of 416 versus 40 nmol/L). The methane oxidation (MOX) rate mirrowed the methane distribution with high values in the inner estuary and low values in the outer estuary (median of 161 versus 10 nmol/L/d respectively) Methane concentrations were significantly influenced by the river hydrology (falling water level) and the trophic state of the water (biological oxygen demand). In contrast to other studies no clear relation to the amount of suspendended particulate matter (SPM) was found. Methane oxidation rates were significantly influenced by methane concentration and to a weaker extent by temperature. Methane oxidation accounted for 41 ± 12% of the total loss of methane in summer/fall, but only for 5 ± 3% of the total loss in winter/spring. We applied a modified box model taking into account the residence times of a water parcel depending on discharge and tidal impact. We observed almost stable methane concentrations in the outer estuary, despite a strong loss of methane through diffusion and oxidation. Thus we postulate that in the outer Elbe estuary a strong additional input of methane is required, which could be provided by the extensive salt marshes near the river mouth.
Resumo:
In tropical eastern Africa, vegetation distribution is largely controlled by regional hydrology, which has varied over the past 20 000 years. Therefore, accurate reconstructions of past vegetation and hydrological changes are crucial for a better understanding of climate variability in the tropical southeastern African region. We present high-resolution pollen records from a marine sediment core recovered offshore of the Rufiji River delta. Our data document significant shifts in pollen assemblages during the last deglaciation, identifying, through changes in both upland and lowland vegetation, specific responses of plant communities to atmospheric (precipitation) and coastal (coastal dynamics and sea-level changes) alterations. Specifically, arid conditions reflected by a maximum pollen representation of dry and open vegetation occurred during the Northern Hemisphere cold Heinrich event 1 (H1), suggesting that the expansion of drier upland vegetation was synchronous with cold Northern Hemisphere conditions. This arid period is followed by an interval in which forest and humid woodlands expanded, indicating a hydrologic shift towards more humid conditions. Droughts during H1 and the shift to humid conditions around 14.8 kyr BP in the uplands are consistent with latitudinal shifts of the intertropical convergence zone (ITCZ) driven by high-latitude Northern Hemisphere climatic fluctuations. Additionally, our results show that the lowland vegetation, consisting of well-developed salt marshes and mangroves in a successional pattern typical for vegetation occurring in intertidal habitats, has responded mainly to local coastal dynamics related to marine inundation frequencies and soil salinity in the Rufiji Delta as well as to the local moisture availability. Lowland vegetation shows a substantial expansion of mangrove trees after ~ 14.8 kyr BP, suggesting an increased moisture availability and river runoff in the coastal area. The results of this study highlight the decoupled climatic and environmental processes to which the vegetation in the uplands and the Rufiji Delta has responded during the last deglaciation.