20 resultados para Maria Carolina, Queen, consort of Ferdinando I, King of the Two Sicilies, 1752-1814.
em Publishing Network for Geoscientific
Resumo:
Some planktonic groups suffer negative effects from ocean acidification (OA), although copepods might be less sensitive. We investigated the effect of predicted CO2 levels (range 480-750 ppm), on egg production and hatching success of two copepod species, Centropages typicus and Temora longicornis. In these short-term incubations there was no significant effect of high CO2 on these parameters. Additionally a very high CO2 treatment, (CO2 = 9830 ppm), representative of carbon capture and storage scenarios, resulted in a reduction of egg production rate and hatching success of C. typicus, but not T. longicornis. In conclusion, reproduction of C. typicus was more sensitive to acute elevated seawater CO2 than that of T. longicornis, but neither species was affected by exposure to CO2 levels predicted for the year 2100. The duration and seasonal timing of exposures to high pCO2, however, might have a significant effect on the reproduction success of calanoid copepods.
Resumo:
Site 536 terminated in a shallow-water dolomite of unknown age. Paleomagnetic measurements combined with strontium isotope analyses suggest that the dolomite was deposited in the Middle Jurassic to Early Cretaceous time interval. However, the assumptions required to reach this determination make these results less than conclusive.
Resumo:
Two Pacific Ocean manganese nodules, one from the ocean basin and one from a sea-mount, were examined in transmission electron microscopes at 100 and 650 kV. Of the many specimens examined, ten electron diffraction crystal spot patterns were identified. Sodium birnessite was observed six times and todorokite, Giavanoli's synthetic birnessite, hydrohausmanite and -Fe2O3 one time each. Ferric hydroxide was synthesized in the laboratory and shown to be the same as the primary iron mineral observed in the manganese nodules. The ferric hydroxide had a particle size range from 30 to 450 ?. Manganese oxide particles were frequently embedded in a mass of smaller ferric hydroxide particles.
Resumo:
Deep-water benthic ostracodes from the Pliocene-Pleistocene interval of ODP Leg 107, Hole 654A (Tyrrhenian Sea) were studied. From a total of 106 samples, 40 species considered autochthonous were identified. Detailed investigations have established the biostratigraphic distribution of the most frequent ostracode taxa. The extinction levels of Agrenocythere pliocenica (a psychrospheric ostracode) in Hole 654A and in some Italian land sections lead to the conclusion that the removal of psychrospheric conditions took place in the Mediterranean Sea during or after the time interval corresponding to the Small Gephyrocapsa Zone (upper part of early Pleistocene), and not at the beginning of the Quaternary, as previously stated. Based on a reduced matrix of quantitative data of 63 samples and 20 variables of ostracodes, four varimax assemblages were extracted by a Q-mode factor analysis. Six factors and eight varimax assemblages were recognized from the Q-mode factor analysis of the quantitative data of 162 samples and 47 variables of the benthic foraminifers. The stratigraphic distributions of the varimax assemblages of the two faunistic groups were plotted against the calcareous plankton biostratigraphic scheme and compared in order to trace the relationship between the benthic foraminifers and ostracodes varimax assemblages. General results show that the two populations, belonging to quite different taxa, display almost coeval changes along the Pliocene-Pleistocene sequence of Hole 654A, essentially induced by paleoenvironmental modifications. Mainly on the base of the benthic foraminifer assemblages (which are quantitatively better represented than the ostracode assemblages), it is possible to identify such modifications as variations in sedimentation depth and in bottom oxygen content.
Resumo:
The Athabasca Basin (Canada) contains the highest grade unconformity-type uranium deposits in the world. Underlying the Athabasca Group sedimentary rocks of the Dufferin Lake zone are variably graphitic pelitic schists (VGPS), altered to chlorite and hematite (Red/Green Zone: RGZ), and locally bleached near the unconformity during paleoweathering and/or later fluid interaction, leading to a loss of graphite near the unconformity. Fluid inclusions were examined in different generations of quartz veins, using microthermometry and Raman analysis, to characterize and compare the different fluids that interacted with the RGZ and the VGPS. In the VGPS, CH4-, N2- and CO2-rich fluids circulated. CH4- and N2-rich fluids could be the result of the breakdown of graphite to CH4/CO2, whereas N2-rich fluid is interpreted to be the result of breakdown of feldspars/micas to NH4+/N2. In the RGZ, highly saline fluids interpreted to be basinally derived have been recorded. The circulation of the two types of fluids (carbonic and brines) occurred at two different distinct events: 1) during the retrograde metamorphism of the basement rocks before the deposition of the Athabasca Basin for the carbonic fluids, and 2) after the deposition of the Athabasca Basin for the brines. Thus, in addition to possibly be related to graphite depletion in the RGZ, the brines can be linked to uranium mineralization.
Resumo:
Nd and Pb isotopes were measured on the fine fraction of one sediment core drilled off southern Greenland. This work aims to reconstruct the evolution of deep circulation patterns in the North Atlantic during the Holocene on the basis of sediment supply variations. For the last 12 kyr, three sources have contributed to the sediment mixture: the North American Shield, the Pan-African and Variscan crusts, and the Mid-Atlantic Ridge. Clay isotope signatures indicate two mixtures of sediment sources. The first mixture (12.2-6.5 ka) is composed of material derived from the North American shield and from a "young" crustal source. From 6.5 ka onward the mixture is characterized by a young crustal component and by a volcanic component characteristic of the Mid-Atlantic Ridge. Since the significant decrease in proximal deglacial supplies, the evolution of the relative contributions of the sediment sources suggests major changes in the relative contributions of the deep water masses carried by the Western Boundary Undercurrent over the past 8.4 kyr. The progressive intensification of the Western Boundary Undercurrent was initially associated mainly with the transport of the Northeast Atlantic Deep Water mass until 6.5 ka and with the Denmark Strait Overflow Water thereafter. The establishment of the modern circulation at 3 ka suggests a reduced influence of the Denmark Strait Overflow Water, synchronous with the full appearance of the Labrador Seawater mass. Our isotopic data set emphasizes several changes in the relative contribution of the two major components of North Atlantic Deep Water throughout the Holocene.
Resumo:
Under present climate conditions, convection at high latitudes of the North Pacific is restricted to shallower depths than in the North Atlantic. To what extent this asymmetry between the two ocean basins was maintained over the past 20 kyr is poorly known because there are few unambiguous proxy records of ventilation from the North Pacific. We present new data for two sediment cores from the California margin at 800 and 1600 m depth to argue that the depth of ventilation shifted repeatedly in the northeast Pacific over the course of deglaciation. The evidence includes benthic foraminiferal Cd/Ca, 18O/16O, and 13C/12C data as well as radiocarbon age differences between benthic and planktonic foraminifera. A number of features in the shallower of the two cores, including an interval of laminated sediments, are consistent with changes in ventilation over the past 20 kyr suggested by alternations between laminated and bioturbated sediments in the Santa Barbara Basin and the Gulf of California [Keigwin and Jones, 1990 doi:10.1029/PA005i006p01009; Kennett and Ingram, 1995 doi:10.1038/377510a0; Behl and Kennett, 1996 doi:10.1038/379243a0]. Data from the deeper of the two California margin cores suggest that during times of reduced ventilation at 800 m, ventilation was enhanced at 1600 m depth, and vice versa. This pronounced depth dependence of ventilation needs to be taken into account when exploring potential teleconnections between the North Pacific and the North Atlantic.
Resumo:
Particle mixing rates have been determined for 5 South Atlantic/Antarctic and 3 equatorial Pacific deep-sea cores using excess 210Pb and 32Si measurements. Radionuclide profiles from these siliceous, calcareous, and clay-rich sediments have been evaluated using a steady state vertical advection diffusion model. In Antarctic siliceous sediments210Pb mixing coefficients (0.04-0.16 cm**2/y) are in reasonable agreement with the 32Si mixing coefficient (0.2 or 0.4 cm**2/y, depending on 32Si half-life). In an equatorial Pacific sediment core, however, the 210Pb mixing coefficient (0.22 cm**2/y) is 3-7 times greater than the 32Si mixing coefficient (0.03 or 0.07 cm**2/y). The difference in 210Pb and 32Si mixing rates in the Pacific sediments results from: (1) non-steady state mixing and differences in characteristic time and depth scales of the two radionuclides, (2) preferential mixing of fine-grained clay particles containing most of the 210Pb activity relative to coarser particles (large radiolaria) containing the 32Si activity, or (3) the supply of 222Rn from the bottom of manganese nodules which increases the measured excess 210Pb activity (relative to 226Ra) at depth and artificially increases the 210Pb mixing coefficient. Based on 32Si data and pore water silica profiles, dissolution of biogenic silica in the sediment column appears to have a minor effect on the 32Si profile in the mixed layer. Deep-sea particle mixing rates reported in this study and the literature do not correlate with sediment type, sediment accumulation rate, or surface productivity. Based on differences in mixing rate among three Antarctic cores collected within 50 km of each other, local variability in the intensity of deep-sea mixing appears to be as important as regional differences in sediment properties.
Resumo:
Upper Pliocene and Pleistocene abundance fluctuations of the radiolarian Cycladophora davisiana (Ehrenberg) davisiana (Petrushevskaya) are documented from North Atlantic (Site 609) and Labrador Sea (Site 646B) to provide the first long-term correlation of its abundance fluctuations to oxygen isotope stages 1-114. Also examined are temporal and regional fluctuations in abundances C. d. davisiana and the global dispersal routes of the species. The first occurrence of C. d. davisiana in the eastern North Atlantic Ocean (Site 609) occurred between 2.586 and 2.435 Ma (oxygen isotope stages 109.66-102.19). During the early Matuyama Chron, prior to oxygen isotope stage 63, C. d. davisiana abundances were less than 1% and never greater than 12%, while abundances of greater than 5% are found in stages 65.71-73, 74, and 83-84. The initial major abundance peak (35.7%) of C. d. davisiana was noted near the stage 63/62 boundary. Abundance peaks of greater than 15%, between oxygen isotope stages 35 and 63, are limited to stages 63.02, 58.07, 55.07-54.26, and 50.76-50.22. These represent the only such abundance peaks detected during the first c. 1.5 million years of the species within the North Atlantic. The character of C. d. davisiana abundance fluctuations in Site 609 changes after oxygen isotope stage 35; average abundances are greater (7.7% vs. 4.3%) and abundance maxima of more than 15% are more frequent. Many, but not all, peak abundances of C. d. davisiana occur in glacial stages (e.g., 8, 14, 18, 20, 26, 30, 34, 50, 54, and 58). Increased abundances of the species are also noted in weak interglacial stages (e.g., stages 3, 23, 39, and 41), and significant cool periods of robust interglacial periods (e.g., late stage 11). Sample spacing is adequate in some stages to note some rapid changes in abundance near stage transitions (e.g., stages 4/5, 25/26, 62/63). The sample density in Holes 609 and 611 and the upper portion of 646B is sufficient to detect a synchroneity of many abundance maxima and minima among sites. Some abundance peaks are undetected in one or more of the two holes, warranting further sampling to obtain a more accurate record of regional abundance fluctuations. Prior to stage 36, few ages of Hole 611 peaks are the same as those in the more precisely dated Hole 609. The highest abundances of C. d. davisiana were noted in Labrador Sea Hole 646B where the earliest known occurrence of the species is documented (3.08-2.99 Ma). C. d. davisiana is inferred to have evolved in the Labrador Sea (or Arctic), and migrated next through the Arctic into the North Pacific (2.62-2.64 Ma, stage 114) before migrating into the Norwegian Sea (2.63-2.53 Ma) and North Atlantic (2.59-2.44 Ma, stages 109-102). Additional migration of C. d. dauisiana into the southern South Atlantic (Site 704) occurred much later (2.06 Ma, stage 83).
Resumo:
The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5, and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by 20-50% depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37% compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.
Resumo:
Deep sea manganese nodules from the Central Pacific Basin are mainly composed of 10Å manganite and d-MnO2 Two zones equivalent to the minerals are evidently distinguishable according to their optical properties. Microscopic and microprobe analyses revealed quite different chemical compositions and textnral characteristics of the two zones. These different feature of the two zones of nodules suggest the different conditions under which they were formed. Concentrations of 11 metal elements in the zones and inter-element relationships show that the 10Å manganite zone is a monomineralic oxide phase containing a large amount of manganese and minor amounts of useful metals, and that the d-MnO2 zone which is apparently homogeneous under the microscope is a mixture of three or more different minerals. The chemical characteristics of the two zones can explain the variation of bulk composition of deep sea manganese nodules and inter-element relationships previously reported, suggesting that the bulk compositions are attributable to the mixing of the 10Å manganite and d-MnO2 zones in various ratios. Characteristic morphology and surface structure of some types of nodules and their relationships to chemistry are also attribut able to the textural and chemical features of the above mentioned two phases. Synthesis of hydrated manganese oxides was carried out in terms of the formation of manganese minerals in the ocean. The primary product which is an equivalent to d-MnO2 was precipitated from Mn 2+ -bearing alkaline solution under oxigenated condition by air bubbling at one atmospheric pressure and room temperature. The primary product was converted to a l0Å manganite equivalent by contact with Ni 2+, Cu 2++ or CO2+ chloride solutions. This reaction caused the decrease of Ni2+, Cu2+ or CO2+ concentrations and the increase of Na+ concentration in the solution. The reaction also proceeded even in diluted solutions of nickel chloride and resulted in a complete removal of Ni2+ from the solution. Reaction products were exclusively 10Å manganite equivalents and their chemical compositions were very similar to those of 10Å manganite in manganese nodules. The maximum value of(Cu+Ni+Co)/Mn ratio of 10Å manganite zones in manganese nodules is 0.16, and the Ni/Mn ratio of synthetic 10Å manganite ranges from 0.15 to 0.18 with the average of 0.167.
Comparison of the stable carbon and nitrogen isotopic values of gill and white muscle tissue of fish
Resumo:
The potential use of stable carbon and nitrogen isotope ratios (d13C, d15N) of fish gills for studies on fish feeding ecology was evaluated by comparing the d13C and d15N of gill tissue with the more commonly used white muscle tissue. To account for the effect of lipid content on the d13C signatures, a study-specific lipid correction model based on C:N ratios was developed and applied to the bulk d13C data. For the majority of species in the study, we found no significant difference in d13C values between gill and muscle tissue after correction, but several species showed a small (0.3-1.4 per mil) depletion in 13C in white muscle compared to gill tissue. The average species difference in d15N between muscle and gill tissue ranged from -0.2 to 1.6 per mil for the different fish species with muscle tissue generally more enriched in 15N. The d13C values of muscle and gill were strongly linearly correlated (R**2 = 0.85) over a large isotopic range (13 per mil), suggesting that both tissues can be used to determine long-term feeding or migratory habits of fish. Muscle and gill tissue bulk d15N values were also strongly positively correlated (R**2= 0.76) but with a small difference between muscle and gill tissue. This difference indicates that the bulk d15N of the two tissue types may be influenced by different isotopic turnover rates or a different composition of amino acids.