27 resultados para Maps of knowledge
em Publishing Network for Geoscientific
Resumo:
From 1978 to 1981, intensive sedimentological investigations were carried out on the Northfrisian intertidal shoals between the small island of Gröde and Nordstrand lsland as a part of an interdisciplinary research projekt. The objective of this sedimentological study was to reveal long and short term tendencies in sedimentation and erosion in the environment. The presented study mainly concentrated on surface mapping in the tidal flats which based on more than 5000 sediment samples. The relative amounts of the grain-size fractions <0.063 mm and >0.125 mm are presented on maps. Predominant sediment typs are well sorted fine sands ("Wattsand") and muddy sands ("Schlicksand"), pure muds covering only small areas. The fine-grained deposits are either found in the lee-side of an island in elongated bays having a low waterdepth during high tide near the shore or near exposed "Klei" outcrops as well as sporadically on the edge of tidal rills. Together with standardized fields observations of biological and physical properties, the maps indicate a slight erosive tendency in large sections of the investigated area.
Resumo:
In this paper, we present a map describing the main geomorphological features of the coastal and marine area between the towns of Albenga and Savona (Ligurian Sea, NW Mediterranean) corresponding to a coastal stretch of ~40 km. To produce this map, we collated data from the literature, orthophotos, perspective photos, multibeam and side scan sonar data, and undertook direct surveys to ground truth data obtained using indirect techniques. We divided the information into nine thematic layers, including bathymetry, natural coastal types, geomorphological elements, seafloor coverage (both geological and biological), coastal and nearshore dynamics, human influence on coastal and marine environments, coastal occupation and protected areas.
Resumo:
We used hyperspectral imaging to study short-term effects of bioturbation by lugworms (Arenicola marina) on the surficial biomass of microphytobenthos (MPB) in permeable marine sediments. Within days to weeks after the addition of a lugworm to a homogenized and recomposed sediment, the average surficial MPB biomass and its spatial heterogeneity were, respectively, 150 - 250% and 280% higher than in sediments without lugworms. The surficial sediment area impacted by a single medium-sized lugworm (~4 g wet weight) over this time-scale was at least 340 cm**2. While sediment reworking was the primary cause of the increased spatial heterogeneity, experiments with lugworm-mimics together with modeling showed that bioadvective porewater transport from depth to the sediment surface, as induced by the lugworm ventilating its burrow, was the main cause of the increased surficial MPB biomass. Although direct measurements of nutrient fluxes are lacking, our present data show that enhanced advective supply of nutrients from deeper sediment layers induced by faunal ventilation is an important mechanism that fuels high primary productivity at the surface of permeable sediments even though these systems are generally characterized by low standing stocks of nutrients and organic material.
Resumo:
A rock salt-lamprophyre dyke contact zone (sub-vertical, NE-SW strike) was investigated for its petrographic, mechanic and physical properties by means of anisotropy of magnetic susceptibility (AMS) and rock magnetic properties, coupled with quantitative microstructural analysis and thermal mathematical modelling. The quantitative microstructural analysis of halite texture and solid inclusions revealed good spatial correlation with AMS and halite fabrics. The fabrics of both lamprophyre and rock salt record the magmatic intrusion, "plastic" flow and regional deformation (characterized by a NW-SE trending steep foliation). AMS and microstructural analysis revealed two deformation fabrics in the rock salt: (1) the deformation fabrics in rock salt on the NW side of the dyke are associated with high temperature and high fluid activity attributed to the dyke emplacement; (2) On the opposite side of the dyke, the emplacement-related fabric is reworked by localized tectonic deformation. The paleomagnetic results suggest significant rotation of the whole dyke, probably during the diapir ascent and/or the regional Tertiary to Quaternary deformation.
Resumo:
Based on data from R.V. Pelagia, R.V. Sonne and R.V. Meteor multibeam sonar surveys, a high resolution bathymetry was generated for the Mozambique Ridge. The mapping area is divided into five sheets, one overview and four sub-sheets. The boundaries are (west/east/south/north): Sheet 1: 28°30' E/37°00' E/36°20' S/24°50' S; Sheet 2: 32°45' E/36°45' E/28°20' S/25°20' S; Sheet 3: 31°30' E/36°45' E/30°20' S/28°10' S; Sheet 4: 30°30' E/36°30' E/33°15' S/30°15' S; Sheet 5: 28°30' E/36°10' E/36°20' S/33°10' S. Each sheet was generated twice: one from swath sonar bathymetry only, the other one is completed with depths from ETOPO2 predicted bathymetry. Basic outcome of the investigation are Digital Terrain Models (DTM), one for each sheet with 0.05 arcmin (~91 meter) grid spacing and one for the entire area (sheet 1) with 0.1 arcmin grid spacing. The DTM's were utilized for contouring and generating maps. The grid formats are NetCDF (Network Common Data Form) and ASCII (ESRI ArcGIS exchange format). The Maps are formatted as jpg-images and as small sized PNG (Portable Network Graphics) preview images. The provided maps have a paper size of DIN A0 (1189 x 841 mm).
Resumo:
Based on data from R/V Sonne multibeam sonar surveys in 2005 a high resolution bathymetry was generated for the Mozambique Basin. The area covers approx. 466,475 sqkm. The mapping area is divided into four sheets with boundaries (west/east/south/north): Sheet I (north-west), 37:00/39:45/-24:00/-20:20; Sheet II (north-east), 39:45/42:30/-24:00/-20:20; Sheet III (south-west), 37:00/39:45/-27:40/-24:00; Sheet IV (south-east), 39:45/42:30/-27:40/-24:00. Basic outcome of the investigation are Digital Terrain Models (DTM), one for each sheet with 0.05 arcmin (~91 meter) grid spacing and one for the entire area with 0.1 arcmin grid spacing. The DTM's were utilized for contouring and generating maps. Moreover the measured bathymetry was combined and compared with GEBCO bathymetry and predicted bathymetry, derived from altimeter satellites. The provided maps have a paper size of DIN A0 (1188.9 x 841 mm).
Resumo:
Photogrammetric surveys have been made and maps drawn of a number of glaciers in the eastern Alps, among them the Waxeggkees in the Zillertal Alps of Tyrol, at approximately ten-year intervals since 1950. Terrestrial photogrammetry was used for the pictures taken in 1950, 1960, 1980, 1989 and 2000, while aerial photogrammetry was employed for the 1969 photo. These maps were subsequently used to calculate the changes in area, elevation and volume for elevational zones of 50 m. The numeric values are given in two tables. The illustration of surface changes in Waxeggkees is continued cartographically on 5 map sheets at the scale of 1 : 15.000 and a vertical interval of the contour lines of 50 m. Changes in glacier area are marked in light red to indicate a decrease in area, and in light blue for an increase. Changes in elevation can only be indicated indirectly, namely in the form of vertical interval bands, referring to the surface areas that arise due to the relocation of the contour lines, resulting from an elevational change. Decrease in elevation is indicated in red, increase in blue, on 100 m contour lines.
Resumo:
Based on the map of landscapes and permafrost conditions in Yakutia (Merzlotno-landshaftnaya karta Yakutskoi0 ASSR, Gosgeodeziya SSSR, 1991), rasterized maps of permafrost temperature and active-layer thickness of Yakutia, East Siberia were derived. The mean and standard deviation at 0.5-degree grid cell size are estimated by assigning a probability density function at 0.001-degree spatial resolution. Spatial pattern of both variables are dominated by a climatic gradient from north to south, and by mountains and the soil type distribution. Uncertainties are highest in mountains and in the sporadic permafrost zone in the south. The maps are best suited as a benchmark for land surface models which include a permafrost module.