14 resultados para Manager of components
em Publishing Network for Geoscientific
Resumo:
A detailed analysis of the texture, matrix, and elements of the microfacies from the carbonate sequence recovered in ODP Hole 639D resulted in a typological classification of 10 major microfacies types and their variants. The variations in distribution and succession of type microfacies allowed us to divide the carbonate sequence into 12 facies-defined subunits. Based on the analyzed characteristics and their relations, we also propose a paleoenvironmental interpretation involving a mixed carbonate/terrigenous ramp model instead of the previous, classical zoned carbonate platform.
Resumo:
A blue-green smectite (iron-rich saponite) and green mica (celadonite) are the dominant sheet silicates in veins within the 10.5 m of basalt cored during DSDP Leg 34, Site 32l, in the Nazca plate. Oxygen isotopic analyses of these clays, and associated calcite, indicate a formation temperature of <25°C. Celadonite contains appreciable Fe2O3, K2O and SiO2, intermediate MgO, and very little Al2O3. Celadonite is commonly associated with goethite and hematite, which suggests that this phase formed by precipitation within a dominantly oxygenated environment of components leached from basalt and provided by seawater. A mass balance estimate indicates that celadonite formation can remove no more than 15% of the K annually transported to the oceans by rivers. In contrast, iron-rich saponite containing significant Al2O3 appears to have precipitated from a nonoxidizing, distinctly alkaline fluid containing a high Na/K ratio relative to unmodified seawater. Seawater-basalt interaction at low temperatures, resulting in the formation of celadonite and smectite may explain chemical gradients observed in interstitial waters of sediments overlying basalts.
Resumo:
Results of studying isotopic composition of helium in underground fluids of the Baikal-Mongolian region during the last quarter of XX century are summarized. Determinations of 3He/4He ratio in 139 samples of gas phase from fluids, collected at 104 points of the Baikal rift zone and adjacent structures are given. 3He/4He values lie within the range from 1x10**-8 (typical for crustal radiogenic helium) to 1.1x10**-5 (close to typical MORB reservoir). Repeated sampling in some points during more than 20 years showed stability of helium isotopic composition in time in each of them at any level of 3He/4He values. There is no systematic differences of 3He/4He in samples from surface water sources and deeper intervals of boreholes in the same areas. Universal relationship between isotopic composition of helium and general composition of gas phase is absent either, but the minimum 3He/4He values occurred in methane gas of hydrocarbon deposits, whereas in nitrogen and carbon dioxide gases of helium composition varied (in the latter maximum 3He/4He values have been measured). According to N2/Ar_atm ratio nitrogen gases are atmospheric. In carbonic gas fN2/fNe ratio indicates presence of excessive (non-atmogenic) nitrogen, but the attitude CO2/3He differs from one in MORB. Comparison of helium isotopic composition with its concentration and composition of the main components of gas phase from fluids shows that it is formed under influence of fractionation of components with different solubility in the gas-water system and generation/consumption of reactive gases in the crust. Structural and tectonic elements of the region differ from the spectrum of 3He/4He values. At the pre-Riphean Siberian Platform the mean 3He/4He = (3.6+/-0.9)x10**- 8 is very close to radiogenic one. In the Paleozoic crust of Khangay 3He/4He = (16.3+/-4.6)x10**-8, and the most probable estimate is (12.3+/-2.9)x10**-8. In structures of the eastern flank of the Baikal rift zone (Khentei, Dauria) affected by the Mz-Kz activization 3He/4He values range from 4.4x10**-8 to 2.14x10**-6 (average 0.94x10**-6). Distribution of 3He/4He values across the strike of the Baikal rift zone indicates advective heat transfer from the mantle not only in the rift zone, but also much further to the east. In fluids of the Baikal rift zone range of 3He/4He values is the widest: from 4x10**-8 to 1.1x10**-5. Their variations along the strike of the rift zone are clearly patterned, namely, decrease of 3He/4He values in both directions from the Tunka depression. Accompanied by decrease in density of conductive heat flow and in size of rift basins, this trend indicates decrease in intensity of advective heat transfer from the mantle to peripheral segments of the rift zone. Comparing this trend with data on other continental rift zones and mid-ocean ridges leads to the conclusion about fundamental differences in mechanisms of interaction between the crust and the mantle in these environments.
Resumo:
A quantitative model of development of magmatic and ore-magmatic systems under crests of mid-ocean ridges is constructed. Correct physical models of melting zone formation in approximation to active spreading, non-stationary dynamics of magma intrusion from a center of generation, filling of magma chambers of various shapes, feeding of fissure-type volcanoes, and retrograde boiling of melts during solidification of intrusive bodies beneath axial zones of spreading in crests of ridges are proposed. Physicochemical and mathematical theories of disintegration of multi-component solutions, growth of liquational drops of ore melts, and sublimation of components from magmatic gases are elaborated. Methods for constructing physically correct models of heat and mass transfer in heterophase media are devised. Modeling of development of magmatic and ore-magmatic systems on the basis of the Usov-Kuznetsov facies method and the Pospelov system approach are advanced. For quantitative models numerical circuits are developed and numerical experiments are carried out.
Resumo:
Distribution of diatoms and planktonic and benthic foraminifers, as well as correlation of components of sandy grain size fraction were studied in the Quaternary sediment core LV28-42-5 (720 cm long) col¬lected on the southeastern slope (1045 m depth) of the Institute of Oceanology Rise, Sea of Okhotsk. This study allowed to reconstruct principle features of paleoceanographic evolution. In the course of penultimate and last continental glaciations (isotope stages 6 and 4-2) and during the later period of the last interglacial (substages 5.d-5.a) the following conditions were characteristic of this area: low temperatures of surface water, terrigenous sediment accumulation including coarse grained ice-rafted material, minimum bioproductivity and microfossil content in sediments, low sea level, reduced water exchange with the ocean, low position of old deep Pacific water. During the interglacial optimum (substage 5.e), as well as in the last deglaciation and Holocene (stage 1) water temperature and bioproductivity increased, sea level rose, and active surface water exchange between the Sea of Okhotsk and the Pacific Ocean and the Sea of Japan took place. This resulted in intensive inflow of the old deep Pacific water into the Sea of Okhotsk and elevation of its upper boundary by few hundred meters. During the later intervals of these warm periods a dichothermal structure of the upper water layer formed and diatom oozes accumulated.
Resumo:
Analysis of the molecular composition of the organic matter (OM) from whole sediment samples can avoid analytical bias that might result from isolation of components from the sediment matrix, but has its own analytical challenges. We evaluated the use of GC * GC-ToFMS to analyze the pyrolysis products of six whole sediment samples obtained from above, within and below a 1 million year old OM-rich Mediterranean sapropel layer. We found differences in pyrolysis products
Resumo:
New radiogenic isotope and trace element data are presented for the volcanic sequences along 600 km of the active Izu-Bonin arc, the Oligocene Izu arc, and their associated rift basins. As with many intra-oceanic island arcs, the Pliocene-Recent Izu-Bonin frontal-arc lavas are highly depleted in Zr, Nb and the rare-earth elements relative to typical mid-ocean ridge basalt (MORB), indicating that the mantle wedge source has undergone a previous episode of melting. Ratios between these elements (such as Nb/Zr and La/Sm), as well as 143Nd/144Nd, do not vary significantly along the length of the frontal-arc. These parameters suggest that each of the arc volcanoes is derived from similar melt fractions of the mantle wedge. However, Ba/Zr, Ba/Rb and 87Sr/86Sr increase along the frontal-arc to the north. This leads us to propose that a variable enrichment in Ba and radiogenic Sr is superimposed on the mantle wedge. Sr-Nd and Pb-Nd isotope variation indicate that both Sr and Pb become more radiogenic after fluid addition. However, Pb isotope ratios do not correlate with increases in Pb concentration or ratios such as Ba/Zr and Nb/Pb. In other words, the Pb isotopic composition of the arc lavas appears to be independent of the amount of Pb introduced by subduction fluids into the mantle source. This buffering of Pb isotopes along the frontal-arc means that the isotopic composition of the lavas is indistinguishable from that of the fluid. Isotopic mixing models presented for the arc are only illustrative of the many plausible combinations of components and quantities. Despite this, we are able to determine that the mantle wedge has isotopic characteristics similar to Indian Ocean MORB, and that the subduction-fluid solute is primarily derived from subducted oceanic basalt with a <2% contribution from subducted sediment. Lavas in the Oligocene Izu arc and fore-arc basin were derived from a mantle wedge of similar composition to the active arc. Despite levels of Pb enrichment comparable to those of the modern arc, the Pb isotopes of the Oligocene volcanics indicate a lower sediment input into the melting region.
Resumo:
Boninites are unusual high MgO-high SiO2 volcanic rocks found in several western Pacific island arcs. Their high Mg/(Mg + total Fe) (0.55-0.83) and compatible element contents (Ni = 70-450 ppm, Cr = 200-1800 ppm) indicate equilibration with mantle peridotite, but their low TiO2 contents (0.1-0.5%) indicate severe depletion of this source. K, Rb, Sr and Ba abundances in boninites are typical of primitive arc basalts, but ratios such as Ti/Zr and La/Yb are variable (Ti/Zr = 23-67, (La/Yb)e.f. = 0.6-4.7). Evidence for both enrichment and depletion of incompatible elements suggests that boninites are derived from refractory peridotite which has been metasomatically enriched in LREE, Zr, Sr, Ba and alkalis. Wide variations in 143Nd/144Nd (0.51262-0.51296) are correlated with La/Sm, Sm/Nd and Ti/Zr, which enables identification of components in the boninite source. Possible LREE depleted components have relative REE and Ti abundances like those in depleted peridotites and high 143Nd/144Nd ratios which reach MORB-like values. Possible LREE enriched components have relative REE abundances similar to those in metasomatized mantle peridotite nodules, and low 143Nd/144Nd ratios which indicate either sedimentary sources or mantle sources with recent to ancient LREE enrichment. Relative abundances of Ba and Sr in boninites decrease with increasing LREE enrichment and suggest a non-sedimentary source for the LREE enriched material. Enrichment in Ba, Sr and alkalis may result from a third component derived from subducted oceanic crust. Two models can account for the successive generation of boninites and arc tholeiites within a single area: 1) boninites can be derived from the peridotite residue of earlier arc tholeiite generation which is metasomatically enriched in LREE before boninite volcanism, or 2) arc tholeiites and boninites can be derived from a variably depleted peridotite source which has been pervasively enriched in LREE. Areas of fertile peridotite would yield tholeiites while refractory areas would yield boninites.
Resumo:
During Integrated Ocean Drilling Program Expedition 302 (Arctic Coring Expedition (ACEX)) a more than 200 m thick sequence of Paleogene organic carbon (OC)-rich (black shale type) sediments was drilled. Here we present new biomarker data determined in ACEX sediment samples to decipher processes controlling OC accumulation and their paleoenvironmental significance during periods of Paleogene global warmth and proposed increased freshwater discharge in the early Cenozoic. Specific source-related biomarkers including n-alkanes, fatty acids, isoprenoids, carotenoids, hopanes/hopenes, hopanoic acids, aromatic terpenoids, and long-chain alkenones show a high variability of components, derived from marine and terrestrial origin. The distribution of hopanoic acid isomers is dominated by compounds with the biological 17beta(H), 21beta(H) configuration indicating a low level of maturity. On the basis of the biomarker data the terrestrial OC supply was significantly enriched during the late Paleocene and part of the earliest Eocene, whereas increased aquatic contributions and euxinic conditions of variable intensity were determined for the Paleocene-Eocene thermal maximum and Eocene thermal maximum 2 events as well as the middle Eocene time interval. Furthermore, samples from the middle Eocene are characterized by the occurrence of long-chain alkenones, high proportions of lycopane, and high ratios (>0.6) of (n-C35 + lycopane)/n-C31. The occurrence of C37-alkenenones, which were first determined toward the end of the Azolla freshwater event, indicates that the OC becomes more marine in origin during the middle Eocene. Preliminary UK'37- based sea surface temperature (SST) values display a longterm temperature decrease of about 15C during the time interval 49-44.5 Ma (25° to 10°C), coinciding with the global benthic d18O cooling trend after the early Eocene climatic optimum. At about 46 Ma, parallel with onset of ice-rafted debris, SST (interpreted as summer temperatures) decreased to values <15°C. For the late early Miocene a SST of 11°-15°C was determined. Most of the middle Eocene ACEX sediments are characterized by a smooth short-chain n-alkane distribution, which may point to natural oil-type hydrocarbons from leakage of petroleum reservoirs or erosion of related source rocks and redeposition.