2 resultados para Malta, collapse, ritual, island

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quasi-periodic variation in sea-surface temperature, precipitation, and sea-level pressure in the equatorial Pacific known as the El Niño - Southern Oscillation (ENSO) is an important mode of interannual variability in global climate. A collapse of the tropical Pacific onto a state resembling a so-called 'permanent El Niño', with a preferentially warmed eastern equatorial Pacific, flatter thermocline, and reduced interannual variability, in a warmer world is predicted by prevailing ENSO theory. If correct, future warming will be accompanied by a shift toward persistent conditions resembling El Niño years today, with major implications for global hydrological cycles and consequent impacts on socioeconomic and ecological systems. However, much uncertainty remains about how interannual variability will be affected. Here, we present multi-annual records of climate derived from growth increment widths in fossil bivalves and co-occurring driftwood from the Antarctic peninsula that demonstrate significant variability in the quasi-biennial and 3-6 year bands consistent with ENSO, despite early Eocene (~50 Mya) greenhouse conditions with global average temperature -10 degrees higher than today. A coupled climate model suggests an ENSO signal and teleconnections to this region during the Eocene, much like today. The presence of ENSO variation during this markedly warmer interval argues for the persistence of robust interannual variability in our future greenhouse world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth and collapse history of two pingos located approximately 18 m a.s.l, and 35 m a.s.l. in Kuganguag, Disko lsland, west-central Greenland were examined. The pingos of this area were formed on Tertiary basalt rocks. One of the pingos is located in the middle of an alluvial fan, the other is on a river bed. Both have already collapsed. The pingo on the river bed had already collapsed at least 3545±60 year BP (14C dating from base of the pond sediments in the pingo crater). Both pingos formed after the sea's retreat as permafrost developed in the newly exposed delta bottom.