36 resultados para Magnolia
em Publishing Network for Geoscientific
Resumo:
Palynological investigation of a 410 cm long core section from Tso Kar (33°10'N, 78°E, 4527 m a.s.l.), an alpine lake situated in the arid Ladakh area of NW India at the limit of the present-day Indian summer monsoon, was performed in order to reconstruct post-glacial regional vegetation and climate dynamics. The area was covered with alpine desert vegetation from ca. 15.2 to 14 kyr BP (1 kyr=1000 cal. years), reflecting dry and cold conditions. High influx values of long-distance transported Pinus sylvestris type pollen suggest prevailing air flow from the west and northwest. The spread of alpine meadow communities and local aquatic vegetation is a weak sign of climate amelioration after ca. 14 kyr BP. Pollen data (e.g. influx values of Pinus roxburghii type and Quercus) suggest that this was due to a strengthening of the summer monsoon and the reduced activity of westerly winds. The further spread of Artemisia and species-rich meadows occurred in response to improved moisture conditions between ca. 12.9 and 12.5 kyr BP. The subsequent change towards drier desert-steppe vegetation likely indicates more frequent westerly disturbances and associated snowfalls, which favoured the persistence of alpine meadows on edaphically moist sites. The spread of Chenopodiaceae-dominated vegetation associated with an extremely weak monsoon occurred at ca. 12.2-11.8 kyr BP during the Younger Dryas interstadial. A major increase in humidity is inferred from the development of Artemisia-dominated steppe and wet alpine meadows with Gentianaceae after the late glacial/early Holocene transition in response to the strengthening of the summer monsoon. Monsoonal influence reached maximum activity in the Tso Kar region between ca. 10.9 and 9.2 kyr BP. The subsequent development of the alpine meadow, steppe and desert-steppe vegetation points to a moderate reduction in the moisture supply, which can be linked to the weaker summer monsoon and the accompanying enhancement of the winter westerly flow from ca. 9.2 to 4.8 kyr BP. The highest water levels of Tso Kar around 8 kyr BP probably reflect combined effect of both monsoonal and westerly influence in the region. An abrupt shift towards aridity in the Tso Kar region occurred after ca. 4.8 kyr BP, as evidenced by an expansion of Chenopodiaceae-dominated desert-steppe. Low pollen influx values registered ca. 2.8-1.3 kyr BP suggest scarce vegetation cover and unfavourable growing conditions likely associated with a further weakening of the Indian Monsoon.
Resumo:
Southern China, especially Yunnan, has undergone high tectonic activity caused by the uplift of Himalayan Mountains during the Neogene, which led to a fast changing palaeogeography. Previous study shows that Southern China has been influenced by the Asian Monsoon since at least the Early Miocene. However, it is yet not well understood how intense the Miocene monsoon system was. In the present study, 63 fossil floras of 16 localities from Southern China are compiled and evaluated for obtaining available information concerning floristic composition, stratigraphic age, sedimentology, etc. Based on such reliable information, selected mega- and micro-floras have been analysed with the coexistence approach to obtain quantitative palaeoclimate data. Visualization of climate results in maps shows a distinct spatial differentiation in Southern China during the Miocene. Higher seasonalities of temperature and precipitation occur in the north and south parts of Southern China, respectively. During the Miocene, most regions of Southern China and Europe were both warm and humid. Central Eurasia was likely to be an arid center, which gradually spread westward and eastward. Our data provide information about Miocene climate patterns in Southern China and about the evolution of these patterns throughout the Miocene, and is also crucial to unravel and understand the climatic signals of global cooling and tectonic uplift.
Resumo:
We present a detailed palaeoclimate analysis of the Middle Miocene (uppermost Badenian-lowermost Sarmatian) Schrotzburg locality in S Germany, based on the fossil macro- and micro-flora, using four different methods for the estimation of palaeoclimate parameters: the coexistence approach (CA), leaf margin analysis (LMA), the Climate-Leaf Analysis Multivariate Program (CLAMP), as well as a recently developed multivariate leaf physiognomic approach based on an European calibration dataset (ELPA). Considering results of all methods used, the following palaeoclimate estimates seem to be most likely: mean annual temperature ~15-16°C (MAT), coldest month mean temperature ~7°C (CMMT), warmest month mean temperature between 25 and 26°C, and mean annual precipiation ~1,300 mm, although CMMT values may have been colder as indicated by the disappearance of the crocodile Diplocynodon and the temperature thresholds derived from modern alligators. For most palaeoclimatic parameters, estimates derived by CLAMP significantly differ from those derived by most other methods. With respect to the consistency of the results obtained by CA, LMA and ELPA, it is suggested that for the Schrotzburg locality CLAMP is probably less reliable than most other methods. A possible explanation may be attributed to the correlation between leaf physiognomy and climate as represented by the CLAMP calibration data set which is largely based on extant floras from N America and E Asia and which may be not suitable for application to the European Neogene. All physiognomic methods used here were affected by taphonomic biasses. Especially the number of taxa had a great influence on the reliability of the palaeoclimate estimates. Both multivariate leaf physiognomic approaches are less influenced by such biasses than the univariate LMA. In combination with previously published results from the European and Asian Neogene, our data suggest that during the Neogene in Eurasia CLAMP may produce temperature estimates, which are systematically too cold as compared to other evidence. This pattern, however, has to be further investigated using additional palaeofloras.
Resumo:
Neogene climates and vegetation history of western Yunnan are reconstructed on the basis of known fossil plants using the Coexistence Approach (CA) and Leaf Margin Analysis (LMA). Four Neogene leaf floras from Tengchong, Jianchuan and Eryuan in southwestern China are analyzed by the CA, and the paleoclimatic data of one Miocene carpoflora from Longling and three Pliocene palynofloras from Longling, Yangyi and Eryuan are used for comparison. The Miocene vegetation of the whole of West Yunnan is subtropical evergreen broad-leaved forest, and a similar mean annual precipitation is inferred for Tengchong, Longling and Jianchuan. However, by the Late Pliocene a large difference in vegetation occurred between the two slopes of Gaoligong Mountain, western Yunnan. The region of Tengchong retained a subtropical evergreen broad-leaved forest vegetation, whereas in Yangyi and Eryuan a vertical vegetation zonation had developed, which consists, in ascending order, of humid evergreen broad-leaved, needle and broad-leaved mixed evergreen, and coniferous forests. Distinctively, the Late Pliocene vegetational patterns of West Yunnan were already very similar to those of the present, and the Pliocene mean annual precipitation in Tengchong was markedly higher than that of Yangyi and Eryuan. Considering that the overall vegetation of West Yunnan and the precipitation at Yangyi and Eryuan have undergone no distinct change since the Late Pliocene, we conclude that the Hengduan Mountains on the northern boundary of West Yunnan must have arisen after the Miocene and approached their highest elevation before the Late Pliocene. Furthermore, the fact of the eastern portion of the Tibetan Plateau underwent a slight uplift after the Late Pliocene is also supported.
Resumo:
A high-resolution calcareous nannofossil analysis of the Danian/Selandian boundary was conducted at Site 1262 (Walvis Ridge, South Atlantic) to pinpoint the lowest occurrence of fasciculiths and to unravel the evolutionary trends throughout nannofossil Zone NP4. Using quantitative analyses, numerous primary and secondary bioevents were identified, improving the biostratigraphic resolution of this interval. The main events recorded at Site 1262 were also identified at the Zumaia section Global Stratotype Section and Point (GSSP) of the base of the Selandian and at the Qreiya section (Egypt). The lowest occurrence of fasciculiths (represented by the LO of Gomphiolithus magnicordis and Gomphiolithus magnus) was observed in the middle part of Chron C27r, above the LO of Toweius pertusus and prior to the LO of the genus Sphenolithus. The synchroneity of the LO of fasciculiths was also verified at various latitudes, such as DSDP Site 384 (NW Atlantic), ODP Site 761B (Indian Ocean) and DSDP Site 577A (Pacific Ocean). The first and second diversification events (Steurbaut and Sztrákos, 2008, doi:10.1016/j.marmicro.2007.08.004), or radiation events (Bernaola et al., 2009, doi:10.1344/105.000000272), of fasciculiths have been thoroughly discussed and well characterized by a succession of events. The occurrence of the Latest Danian Event (LDE) and several paleoenvironmental changes recognized during this time interval, coupled with an ecological competition with Sphenolithus, appear to be the probable causes of the First and Second Radiations and the fasciculith barren interval between them. The occurrence of new morphostructures and taxa suggests evolutionary trends and a strict link between morphological evolution and paleoclimate.