133 resultados para Magnetization
em Publishing Network for Geoscientific
Resumo:
The samples investigated in this study come from DSDP Leg 73 Drill Holes 519A, 522B, and 524, all of which are in the South Atlantic. A general petrographic description of the basalts is given by Carman et al. (1984; doi:10.2973/dsdp.proc.73.120.1984).
Resumo:
Basalts from Hole 534A are among the oldest recovered from the ocean bottom, dating from the opening of the Atlantic 155 Ma. Upon exposure to a 1-Oe field for one week, these basalts acquire a viscous remanent magnetization (VRM), which ranges from 4 to 223% of their natural remanent magnetization (NRM). A magnetic field of similar magnitude is observed in the paleomagnetic lab of the Glomar Challenger, and it is therefore doubtful if accurate measurements of magnetic moment in such rocks can be made on board unless the paleomagnetic area is magnetically shielded. No correlation is observed between the Konigsberger ratio (beta), which is usually less than 3, and the ability to acquire a VRM. The VRM shows both a log t dependence and a Richter aftereffect. Both of these, but especially the log t dependence, will cause the susceptibility measurements (made by applying a magnetic field for a very short time) to be minimum values. The susceptibility and derived Q should therefore be used cautiously for magnetic anomaly interpretation, because they can cause the importance of the induced magnetization to be underestimated.
Resumo:
Lower Campanian to middle Eocene chalks and oozes were recovered at Sites 761 and 762 of Ocean Drilling Program Leg 122 on the Exmouth Plateau, northwest Australia. Paleomagnetic analyses were made on 125 samples from Hole 761B and 367 samples from Hole 762C. Thermal cleaning, alternating field demagnetization, or mixed treatment reveals a stable remanent component of normal or reversed polarity. Correlation of the magnetic polarity sequences established for these holes with the standard magnetic polarity time scale was aided by nannofossil zonation. At Hole 761B, the sequence extends from Subchron C32-N (upper Campanian) through Subchron C17-R (middle Eocene), but given the low sedimentation rate, not all the subchrons of the standard magnetic polarity sequence were recognized. The sequence at Hole 762C extends from Subchron C13-R (middle Eocene) to the boundary between Chrons C33 and C34 (lower Campanian). The sedimentation rate is higher at Hole 762C, and all the magnetic polarity subchrons of the Campanian and Maestrichtian stages were identified. Thus, this hole could be a reference section to refine the Upper Cretaceous time scale.
Resumo:
Samples were collected at Sites 1225 and 1227 to investigate the occurrence of fine-grained, biogenic magnetic particles (magnetosomes). Several magnetic methods, including anhysteretic remanent magnetization and isothermal remanent magnetization, were used to characterize the main magnetic carriers in the samples. Extracts were made to isolate the fine-grained fraction, which was then examined under a transmission electron microscope. Grains with the unique characteristics of magnetosomes were found in samples from regions in the core with both high and low concentrations of magnetic minerals. This suggests they have the potential to be a persistent proxy of paleoredox conditions.
Resumo:
Dark green spherules occur in the lower part of a turbidite in Section 603B-22-3, at the 70 cm level. In all probability these spherules originally consisted of massive glass, but now appear to have become completely altered into smectite. The presence of numerous microscopic fissures in the spherules probably mediated in the alteration process. Judging by the presence of similar spherules at the Cretaceous/Tertiary (K/T) boundary in DSDP Hole 390B, the green spherules are thought to represent diagenetically altered impact ejecta from one large or several smaller extraterrestrial objects at the end of the Cretaceous. The presence of anomalously high concentrations of Ni, Co, and As higher up in the turbidite are in agreement with an expected enrichment of these elements in the K/T boundary clay. However, precise Ir analyses are necessary in order to confirm this.